Abstract

The effects of a step defect and a random array of point defects (such as vacancies or substitutional impurities) on the force of friction acting on a xenon monolayer film as it slides on a silver (111) substrate are studied by molecular dynamic simulations and compared with the results of lowest order perturbation theory in the substrate corrugation potential. For the case of a step, the magnitude and velocity dependence of the friction force are strongly dependent on the direction of sliding respect to the step and the corrugation strength. When the applied force F is perpendicular to the step, the film is pinned forF less than a critical force Fc. Motion of the film along the step, however, is not pinned. Fluctuations in the sliding velocity in time provide evidence of both stick-slip motion and thermally activated creep. Simulations done with a substrate containing a 5 percent concentration of random point defects for various directions of the applied force show that the film is pinned for the force below a critical value. The critical force, however, is still much lower than the effective inertial force exerted on the film by the oscillations of the substrate in experiments done with a quartz crystal microbalance (QCM). Lowest order perturbation theory in the substrate potential is shown to give results consistent with the simulations, and it is used to give a physical picture of what could be expected for real surfaces which contain many defects.

Notes

Originally posted at http://arxiv.org/abs/cond-mat/9904164v2. Preprint of an article published in Physical Review B, v.60 no.6, 1999.

Keywords

Xe film sliding, Ag(111), step defects, xenon monolayer film, silver substrate

Subject Categories

Condensed matter, Materials science, Friction, Point defects

Disciplines

Physics

Publication Date

1999

Click button above to open, or right-click to save.

Included in

Physics Commons

Share

COinS