Abstract

The current trend of depletion of natural resources due to an ever-increasing number of consumer goods manufactured has led to an increase in the quantity of used and outdated products discarded. From an environmental point of view, it is not only desirable to disassemble, reuse, remanufacture and/or recycle the discarded products, in many cases it can also be economically justified. This situation being the motive, in recent years there have been several studies reported on disassembly, remanufacturing and/or recycling environments. Since ""environmentally conscious manufacturing"" is a relatively new concept that brings new costs and profits into consideration, its analysis cannot be provided by readily available techniques. This paper presents a quantitative methodology to determine the allowable tolerance limits of planned/unplanned inventory in a remanufacturing supply chain environment based on the decision-maker's unique preferences. To this end, an integer goal-programming model that provides a unique solution for the allowable inventory level is presented. The objective of the supply-chain model is to determine the number of a variety of components to be kept in the inventory while economically fulfilling the demand of a multitude of components, and yet have an environmentally benign policy of minimizing waste generation. A numerical example is presented to illustrate the methodology.

Keywords

Disassembly Process Plan, Inventory, Goal Programming, Recycling, Remanufacturing, Reuse

Subject Categories

Production engineering

Disciplines

Engineering

Publication Date

2000



Click button above to open, or right-click to save.

Included in

Engineering Commons

Share

COinS