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Persistence of Screening and Self-Criticality in the Scale Invariant Dynamics 
of Diffusion Limited Aggregation 
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Dipartimento di Fisica. Unit'ersita di Roma "La Sapienza." Piazzale A. Moro 2. OOI85-Roma. Italy 

(Received II November 1992) 

The origin of fractal properties in diffusion limited aggregation is related to the persistence of screen­
ing in the scale invariant growth regime. This effect is described by the effective noise reduction param­
eter S spontaneously generated by the scale invariant dynamics. The renormalization of this parameter 
under scale transformation shows the following: (j) The fixed point is attractive, implying the self­
critical nature of the process. (ji) The fixed point value S* is of the order of unity, showing that the 
small scale growth rules are already close to the scale invariant ones and that screening effects persist in 
the asymptotic regime. 

PACS numbers: 64.60.Ak, 02.50.-r, 05.40.+j 

Diffusion limited aggregation (DLA) and the dielectric 
breakdown model (DBM) are co'nsidered as prototype 
fractal growth models for several physical phenomena [11 
ranging from electric discharge to cluster growth by ac­
cretion of diffusing particles. These models are rather 
simple and lead to very complex fractal patterns, which 
are the result of a self-organizing stochastic process 
governed by the Laplace equation. The DLA and DBM 
have been objects of intense studies in the past years and, 
from a theoretical point of view, one can formulate the 
following hierarchy of problems: (a) Why DLA gives rise 
to fractal structures. (b) How to compute the fractal di­
mension D analytically. (c) Understanding also proper­
ties that go beyond the simple fractal dimension, like 
morphology, self-affinity and anisotropy, topological 
properties, eventual multifractality of the growth proba­
bility, and several others [11. 

A number of authors have proposed several theoretical 
approaches [I] to DLA and DBM; however, the extension 
of standard theoretical methods to these problems turned 
out to be rather problematic [21. It is for this reason that 
some years ago we introduced the new approach of the 
fixed scale transformation (FST) [3]. In this method one 
studies the properties of the system under dynamical evo­
lution at a given scale. If the fixed point corresponding to 
this dynamical evolution is the same at all scales, then it 
is possible to derive the fractal dimension. In principle 
this would imply the use of asymptotic scale invariant 
growth rules [4-6]; however, consistent results for the 
fractal dimension could be obtained already with the use 
of the small scale growth rules. In this sense the original 
FST method allowed one to make some progress on point 
(b) but the lack of control on the scale invariant dynam­
ics did not allow a proper treatment of point (a). In this 
Letter we address this question by characterizing some 
essential properties of the scale invariant dynamics. 

These models are intrinsically critical in the sense that 
their dynamics evolves in the scale invariant one without 
tuning any parameter. However, the lack of a charac­
teristic length in the original (small scale) growth rules 

does not guarantee that these hold at a generic scale. 
Therefore, the question of the universality and scale in­
variant properties [point (a)] of DLA and DBM are re­
lated to their effective asymptotic dynamics. In addition 
the knowledge of this effective dynamics is one of the key 
points in the understanding of why these models give rise 
to fractal structures. This problem is in general very 
complex due to the large number (in principle infinite) of 
parameters that would appear in the renormalized dy­
namics. In practice, however, one can fix a subset of pa­
rameters and study their evolution under scale change in 
the highly complex space of growth rules. This procedure 
is somewhat arbitrary because these restrictions are 
selected a priori and it is hard to make the approach sys­
tematic from this point of view. Some approaches along 
this line are nevertheless instructive [4,7-101. 

In order to answer point (a) the FST framework 
points, however, to the essential concept: Fractals can be 
originated only if screening persists in the scale invariant 
regime [31. Note that the presence of screening due to 
the Laplace equation in the original growth rules does not 
guarantee that a similar effect persists for coarse grained 
variables. In fact, if one studies the growth rules for a 
coarse grained cell, a problem of noise reduction [I 1,12] 
naturally appears. The larger the cell, the larger will be 
the number of particles necessary to span it. Naively 
therefore one could expect that, asymptotically, the 
effective noise reduction parameter (S) could diverge. 
This would then eliminate screening effects and lead to a 
compact structure. Therefore the key feature of the 
asymptotic growth rules with respect to point (a) is the 
identification of the fixed point noise reduction parame­
ter. 

The behavior of the noise reduction parameter has been 
up to now studied with respect to the overall shape of the 
cluster or with respect to the anisotropy problem in a 
square lattice [I31. It should be noted that the overall 
shape morphology and the internal fractal properties of 
the clusters are two different problems that have some­
times been confused, especially in relation to simulations 
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in radial geometry. The overall morphology is linked to 
the velocity of propagation of the growing interface while 
the fractal properties should refer to the nature of the 
structure that is left behind asymptotically. The internal 
fractal properties are in fact similar for both lattice and 
otT-lattice DLA and this becomes particularly clear in the 
cylinder geometry. Our present studies as well as the 
FST approach refer to the intrinsic fractal properties 
(and not to the overall shape of the radial DLA) that are 
similar for lattice and otT-lattice growth. A discussion of 
the ditTerence between the intrinsic fractal properties and 
the overall shape, that is instead lattice dependent, can be 
found in Ref. [21. 

The problem of the asymptotic behavior of the noise 
reduction parameter S will be addressed by constructing 
a scheme of renormalization in real space. The main re­
sults are that the fixed point noise reduction parameter 
S* turns out to be of the order of unity with an attrac­
tive fixed point. These results clarify therefore the self­
critical nature of DLA patterns, opposite, for example, to 
percolation in which the fixed point Pc is repulsive [5,61. 
This is due to the fact that, under scale change, noise is 
automatically generated by the dynamics of the system 
and it implies that a noise reduced DLA model flows 
essentially into the standard DLA process with respect to 
fractal properties. This is in contrast to the usual belief 
(that refers, however, only to the overall shape) that noise 
reduction accelerates the approach to the asymptotic be­
havior [II, 131, but it is in agreement with recent studies 
that refer instead to the fractal properties [I 21. 

In addition, the fact that the value of S* is close to 1 
shows that screening is asymptotically preserved and that 
the minimal scale growth rules are already rather close to 
the asymptotic ones. This allows one therefore to under­
stand why the initial FST studies of DLA, in which the 
minimal scale growth rules were used, give indeed reason­
able results for the fractal dimension [31. Further details 
in the scale invariant growth rules would atTect the pre­
cise value of D but not the fact that the resulting struc­
ture is fractal. 

In the noise reduction generalization of the DLA and 
DBM growth rules a bond is grown only after having 
been hit by S particles [111. A counter is raised by one 
each time a particle hits the respective bond. When a 
counter reaches the value S the corresponding bond is oc­
cupied and the new bonds near this one have their 
counters set to zero. The etTect of this procedure is a sys­
tematic reduction of the noise. In fact the introduction of 
the parameter S corresponds to averaging over several 
realizations of the same stochastic process. This reduces 
the fluctuations and introduces, through the counters, a 
memory etTect. For a finite value of S the branches ac­
quire a finite thickness, while for S ---. 00 screening is 
suppressed and the structure is compact [11,121. 

If one considers the original DLA process with S-l at 
the minimal scale, it is clear that a nontrivial noise reduc-
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tion parameter appears for a coarse grained cell because 
many bonds are needed to span the large cell. The prob­
lem is therefore to study the evolution of the etTective 
noise reduction parameter as a function of scale transfor­
mation. The arrival of each particle corresponds actually 
to a Poisson process. If S particles have to arrive in order 
to lead to growth within a time t, one can show that [7] 

For a coarse grained bond one also has to consider its 
internal structure. If the noise reduction parameter at 
the fine scale is S, the growth of the coarse grained bond 
corresponds to the superposition of ditTerent Poisson pro­
cesses, each with a certain number of particles N(S) and 
with the associated probability. One can then define the 
etTective noise reduction parameter S' at the larger scale 
by using Eq. (I) to define the etTective noise reduction at 
a generic scale. This leads to [7] 

S' 
1 + ([8N(S)]2) 

(N(S) (N(S)2 

The key point is therefore to define the appropriate re­
normalization scheme in order to compute the averages 
that appear in Eq. (2). In order to do this analytically it 
is convenient to use the usual cell-to-bond transformation 
of Fig. 1. We define the following renormalization group 
(RG) transformation rules on the cell of Fig. 1: G) The 
cell not spanned vertically by grown (thick) bonds is re­
normalized to a vertical perimeter (thin) bond. GO The 
cell spanned vertically by grown bonds is renormalized to 
a vertical grown (thick) bond. 

The simplest way to define the RG transformation in 
practice is to consider only the renormalization along the 
vertical direction. In this case the renormalization trans­
formation is exactly that of Eq. (2). In practice we have 
to consider the configurations renormalized in a perimeter 
bond and compute the quantities (N(S) and (N 2(S) 
corresponding to spanning the cell for each configuration. 
One therefore has to consider all the paths that span the 
cell, weighting them with the probabilities of the corre­
sponding growth processes. In addition, all the possible 
configurations of the small scale counters have to be con­
sidered. Finally this process has to be repeated for all the 
possible starting configurations of the considered cell. 
These starting configurations are shown in Fig. 2 and are 
related to each other by the growth process [81. The 

~-o W-O 
FIG. 1. Cell-bond renormalization scheme. The thick lines 

denote the growing bonds. 
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FIG_ 2. There are ten different occupation configurations for 
a 2 x 2 cell. They are related to each other by the growth pro­
cess. The thick black lines correspond to occupied bonds while 
the thin lines represent the bonds on which growth can occur. 

weight W(a) of a given starting configuration (a) can 
therefore be related to the probabilities of the elementary 
growth processes. 

We can write therefore 

(N(S» = L w(a)(S)LP/a)(S)N/a)(S) (3) 
a i 

in which the index i refers to a particular path whose to­
tal probability is given by p/a and N/a is the corre­
sponding total number of particles. An analogous equa­
tion can be written for (N 2(S». 

Each path leading to p/a)(s) is made by a sequence of 
elementary bond probabilities p/S) that depend on the 
particular configuration (j). For example if we have a 
competition between two bonds, I and 2 as, for example, 
in the right part of Fig. 1, these will be characterized by 
the corresponding Laplacian potentials "'I and "'2, which 
give the probabilities that a random walk reaches the cor­
responding bond. The probability PI (S) that, with a 
noise reduction parameter s, the bond I will grow before 
bond 2 can be written as 

I S~I [S+k-I) [ "'I )S[ "'2 )k PI(S)=-~ ----
N k-O k "'I +"'2 "'I +"'2 

where N is the normalization factor. This expression cor­
responds to the probability that S - 1 particles arrive at 
bond I, while any number between 0 and S - 1 arrives at 
bond 2, and finally the last particle reaches the bond I. 

This formalism can be naturally generalized to more 
complex structures that involve more than two growing 
bonds by using the multinomial generalization. It is also 
possible to extend the results to non integer values of S by 
analytical continuation [14]. 

In this way it is possible to compute analytically the re­
normalization transformation given by Eq. (2). In fact, 
solving the Laplace equation for each configuration of the 
starting cell and spanning path, it is possible, throu~h Eq. 
(4), to calculate the probabilities w(a)(s) and Pi a)(s). 
Finally, (N 2(S» and (N(S» are obtained by Eq. (3). 
The details of the calculation will be reported elsewhere 
[I4] while here we only discuss the results. These are 
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FIG. 3. Renormalization equation for the noise reduction pa­
rameter S' at the coarse grained scale as a function of the noise 
reduction parameter S of the finer scale. One can see that the 
fixed point is altractiL'e and that the value of S* is of the order 
of unity, implying that screening is preserved to the asymptotic 
scale. 

essentially contained in Fig. 3, which shows the group 
equation S' = R (S) that describes the change of the noise 
reduction parameter under scale transformation. 

The main results are the following: 
(a) The fixed point for the noise reduction parameter 

S is attractive. This allows us to understand the self­
critical nature of the dynamics of DLA because a large 
degree of noise is spontaneously generated even if one 
would start from a quasideterministic process (large S) at 
small scale. 

(b) The fixed point value is S * = 2.4, therefore of the 
order of unity. This guarantees that screening is pre­
served to all scales in the asymptotic regime. The per­
sistence of screening in the scale invariant dynamics of 
the growth process allows us to understand why the DLA 
process actually leads to a fractal structure. In addition 
the small value of S* implies that the scale invariant 
growth rules are actually rather close to the small scale 
ones Gn the bond or DBM version [4]). This allows us 
now to clarify why the FST method gives rather good re­
sults even with the standard small scale growth rules [3]. 
In principle this is not obvious because the scale invariant 
growth rules represent the non universal critical parame­
ters that should actually be used in the FST in order to 
derive the fractal dimension in a consistent way [5]. Pre­
liminary calculations show that the use of the scale in­
variant dynamics in the FST approach leads to a value of 
the fractal dimension D= 1.70 [14]. This should be com­
pared with the value D -1.64 previously obtained using 
the small scale growth rules [3]. 

It should be noted that the results of Fig. 3 are very 
stable with respect to improved schemes to compute the 
renormalization transformation. For example we have 
considered larger cell schemes and the possibility of 
different noise reduction parameters for the growth direc-
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tion (S I) or the lateral direction (S 2). The results of this 
more complex scheme are essentially similar to those of 
Fig. 3 [141. 

In order to understand the self-organized nature of the 
DLA process and the fact that S* is of order of unity it is 
useful to consider the following reasoning. Suppose that 
we start at a small scale with a large value of S (small 
noise) and we study how this value will change under 
scale transformation. Given that at the small scale the 
probability distribution that it takes exactly a time t to 
occupy a bond is 

_}../ (At) (S-)} 
W(S,t)=e (S-\)! 'Adt, (5) 

we intend to estimate the probability distribution to span 
a cell and occupy a coarse grained bond. 

The different occupation configurations of a cell (Fig. 
2) will lead to various possible paths of different lengths 
appearing in Eq. 0). Typically for a 2x2 cell there will 
be paths of lengths of 1, 2, 3, and 4 steps, depending on 
the path and on the starting configuration. For simplicity 
we consider only the possibility of lengths of 2 and 3 with 
probability, respectively, of p and I - p. This would lead 
to a time distribution for the occupation of the coarse 
grained bond given by 

W(S',t) =pW(2S,t) + (I - p)wOS,t). 

For large values of S this distribution will consist of two 
highly peaked functions at positions 2S and 3S. Just the 
fact of having two peaks introduces a fluctuation in 
W(S', t) that is larger than the intrinsic fluctuations of 
W(2S,t) and wOS,t). Therefore if p is appreciably 
different from zero (this is actually unavoidable if 
different configurations are involved) we can treat these 
distributions as 8 function. An upper limit for Scan 
therefore be easily computed as 

(7) 

This shows that the value of S' becomes immediately of 
the order of unity even if the starting value of S at the 
lower scale is very large. The key point is that as soon as 
there are different paths the fluctuations between the 
lengths of these paths are necessarily of the order of the 
path lengths. This implies that (8t 2) is of the order (t 2) 

independently of the value of S at the smaller scale. In 
this way it is possible to understand how the DLA dy­
namics intrinsically generates a large noise asymptotical­
ly even if the small scale dynamics is characterized by a 
small noise. The fact that the results of our renormaliza-
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tion schemes can be understood in this simple way pro­
vides strong support for their general validity. 

The main conclusions of this paper are therefore the 
following: From the FST approach to fractal growth one 
can see, in a mathematically controllable way, that the 
necessary condition for a growth model in order to gen­
erate fractal structures (as opposite to compact ones) is 
the persistence of screening in the asymptotic dynamics 
for coarse grained cells. For DLA the identification of 
the asymptotic dynamics is in general quite complex. In 
this respect we identify the critical parameter that gov­
erns the screening as the effective noise reduction. This is 
spontaneously generated in the coarse graining process 
for the growth rules. However, we show here by a renor­
malization analysis that not only does this parameter not 
diverge (this would eliminate screening), but its fixed 
point is attractive at a value of the order of unity. This 
demonstrates the self-critical nature of the process and it 
shows that the small scale growth rules are already rather 
close to the asymptotic ones. 
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