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We introduce the general formulation of a renormalization method suitable to study the critical
properties of nonequilibrium systems with steady states: the dynamically driven renormalization group.
We renormalize the time evolution operator by computing the rescaled time transition rate between
coarse grained states. The obtained renormalization equations are coupled to a stationarity condition
which provides the approximate nonequilibrium statistical weights of steady-state configurations to be
used in the calculations. In this way we are able to write recursion relations for the parameter evolution
under scale change, from which we can extract numerical values for the critical exponents. This general
framework allows the systematic analysis of several models showing self-organized criticality in terms
of usual concepts of phase transitions and critical phenomena. [S0031-9007(96)01709-7]

PACS numbers: 64.60.Ak, 05.40.+j, 64.60.Lx

In the last decade nonequilibrium critical phenomena
have attracted a wide interest in statistical physics. Criti-
cal systems are characterized by the absence of a charac-
teristic lengthscale, strong fluctuations, and nonanalyticity
of the correlation functions. Examples of this behavior
can be found in phase transitions [1–3], self-organized
critical (SOC) systems [4], fractal growth [5], and a vast
class of complex systems [6]. The major source of diffi-
culties in the study of nonequilibrium critical phenomena
[3,7] lies in the absence of a general criterion, like the
use of the Gibbs distribution in equilibrium systems, to
assign an ensemble statistical measure to a particular con-
figuration of the system. The probability distribution is
instead a time dependent solution of a master equation,
which only in some particular cases becomes stationary in
the long time limit.

In this Letter we present the general formalism of a
real space dynamical renormalization group (RG) scheme
for systems with a nonequilibrium critical steady state:
the dynamically driven renormalization group (DDRG).
The method combines the renormalization of the time
evolution operator with a stationarity condition which
allows the calculation of the approximate steady-state
configurations probability distribution. This coupling acts
at each coarse graining step and therefore represents a
driving for the renormalization group equations. For SOC
systems [8–10], the DDRG allows us to derive in a
broader framework previous RG schemes [11–13] and to
formulate a more systematic approach. Here we show the
explicit application of the DDRG to the forest-fire model
(FFM) [9,10], which we can now study in the whole
parameters space. Possible applications of the DDRG
are not restricted to SOC models: The method can be
used to study other equilibrium or nonequilibrium critical
phenomena such as driven diffusive systems [2,3], which
to our knowledge have never been approached by real
space RG methods.

We consider discrete lattice models on ad-dimensional
lattice. To each sitei is associated a variablesi ,
which can assumeq different values (si ­ 0, 1, . . . , q).
A complete sets ; hsij of lattice variables specifies
a configuration of the system. We defineksjT smdjs0l
as the transition rate from a configurations0 to a
configurations in a time stept as a function of a set
of parametersm ­ hmij. The time dependent probability
distribution Pss, td for the configurations of the system
obeys the following master equation (ME):

Pss, t0 1 td ­
X
hs0j

ksjTsmdjs0lPss0, t0d . (1)

The explicit solution of the master equation is in general
not available, but we can extract the critical properties of
the model by a renormalization group analysis. We coarse
grain the system by rescaling lengths and time according
to the transformationx °! bx and t °! bzt. The
renormalization transformation is constructed through an
operatorRsS, sd that introduces a set of coarse grained
variables S ; hSij and rescales the lengths of the
system [14]. In general,R is a projection operator
with the propertiesRsS, sd $ 0 for any hSij, hsij,
and

P
hSj RsS, sd ­ 1. These properties preserve the

normalization condition of the renormalized distribution.
The explicit form of the operatorR is defined case by
case in the various applications of the method. Usually
it corresponds to a block transformation in which lattice
sites are grouped together in a super-site that defines
the renormalized variablesSi by means of a majority or
spanning rule.

We subdivide the time step in intervals of the unitary
time scale (t0 ­ 0) obtaining the coarse graining of the
system as follows:

P0sS, t0d ­
X
hsj

RsS, sd
X
hs0j

ksjTbz

smdjs0lPss0, 0d , (2)
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where we have included the application of the operator
R and t0 ­ bzt. The meaning ofksjTbz smdjs0l has to
be defined explicitly: The simplest possibility isbz ­
N where N is an integer number, andT N denotes the
application of the dynamical operatorN times. In general,
since we are dealing with a discrete time evolution we
have to considerT bz

as a convolution over different

paths, chosen by an appropriate condition. The detailed
definition of the effective operatorTbz

is reported in
Ref. [15]. By multiplying and dividing each term of
Eq. (2) byP0sS0, 0d ­

P
hs0j RsS0, s0dPss0, 0d and using

the properties of the operatorR, we get, after some
algebra,

P0sS, t0d ­
X
hS0j

"P
hs0j

P
hsj RsS0, s0dRsS, sd ksjTbz smdjs0lPss0, 0dP

hs0j RsS0, s0dPss0, 0d

#
P0sS0, 0d , (3)

which finally identifies the renormalized dynamical opera-
tor kSjT 0jS0l. In other words the new dynamical opera-
tor T 0 is the sum over all the dynamical paths ofbz steps
that from a starting configurationhs0

i j lead to a configura-
tion hsij, which renormalize, respectively, inhS0

i j andhSij.
The sum is weighted by the normalized statistical distribu-
tion of each configuration.

We apply this scheme to systems with a steady state
described by a stationary distributionPss, t °! `d ­
W ssd. For equilibrium systems the stationary distribu-
tion has the Gibbs formW ssd , expf2bHssdg, where
Hssd is the Hamiltonian. There is not such a general
criterion for nonequilibrium dynamical systems, therefore
we have developed an approximate method to evaluate
the stationary distribution to be used in the calculation of
the renormalized master equation. The simplest approx-
imation considers only the incoherent part of the station-
ary distribution which does not include correlations and
can therefore be factorized. For systems characterized by
q-state variables it has the form

W sidssd ­
Y

i

krsi l , (4)

wherekrkl is the average density of sites in thek state.
In this way, we have approximated the probability of each
configurationhsij as the product measure of the mean
field probability to have a statesi in each corresponding
site. The values of the densitieshkrklj as a function of the
parametersm are obtained by solving appropriate mean-
field equations in the long time limit. These equations
have the form of a stationarity condition

≠

≠t
hkrklj ­ Smshkrkljd ­ 0 , (5)

where the operatorSm describes the evolution of the
system as a function of the dynamical parameters defined
above. Time independent solutions of Eq. (5) will be
referred to as “steady states,” although we should keep
in mind that those are only the average states of the
ensemble [16]. In ordinary statistical systems, Eq. (5)
represents the thermodynamic equilibrium condition. For
driven dynamical systems, it describes thedriving of the
system to the nonequilibrium steady state, by means of a
balance condition.

By inserting this approximate distribution in Eq. (3),
we obtain the renormalized dynamical operator

kSjT 0smdjS0l ­

P
hs0j

P
hsj RsS0, s0dRsS, sd ksjTbz smdjs0l

Q
ikrs

0
i
lP

hs0j RsS0, s0d
Q

ikrs
0
i
l

, (6)

where the densities are calculated at each coarse graining
step from the stationary condition [Eq. (5)] with the
corresponding renormalized dynamical parametershmj.
Since in this framework Eq. (5) drives the RG equations
acting as a feedback on the scale transformation, we call
it the driving condition.

Equations (5) and (6) are the basic renormalization
equations from which the desired recursion relations are
obtained. Imposing that the renormalized operatorT 0

has the same functional form of the operatorT , i.e.,
T 0smd ­ T sm0d, we obtain the rescaled parameter setm0 ­
fsmd. This implies that the renormalized single time
distribution P0sS, t0d has the same functional form of
the original distributionPss, td. The critical behavior
of the model is obtained by studying the fixed points
mp ­ fsmpd. Since we are dealing with discrete evolution
operatorsT , we define the time scaling factorbz as the

average number of steps we apply the operatorT in
order to obtain thatT 0smd ­ Tsm0d for the coarse grained
system. In this way we obtain a time recursion relation
t0 ­ gsmdt, or equivalentlybz ­ gsmd, from which it
is possible to calculate the dynamical critical exponent
z ­ ln gsmpdy ln b. In this form of the DDRG, we take
into account only the uncorrelated part of the steady-
state probability distribution. The results obtained are not
trivial because correlations in the systems are considered
in the dynamical renormalization of the operatorT , that
given a starting configuration traces all the possible paths
leading to the renormalized final configuration. Moreover,
geometrical correlations are treated by the operatorR
that maps the system by means of spanning conditions
or majority rules. The renormalized uncorrelated part of
the stationary distribution is evaluated from the stationary
condition with renormalized parameters, thus providing an
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effective treatment of correlations. One can then improve
the results by including higher order contributions to
the unknown stationary distributionWssd using cluster
variation methods [17]. Naturally the above scheme can
also be applied to equilibrium critical phenomena, where
the driving condition is represented by the equilibrium
mean field equations [15].

The DDRG is a useful tool to study the critical
properties of SOC systems. In fact, these systems evolve
spontaneously in a scale invariant stationary state. The
forest-fire model is a simple automaton which has been
introduced by Baket al. [9] as an example of SOC, and
has been then modified by Drossel and Schwabl [10]. The
model is defined on a lattice in which each site can be
empty (si ­ 0), occupied by a green tree (si ­ 1) or by
a burning tree (si ­ 2). At each time step the lattice is
updated as follows: (i) A burning tree becomes an empty
site; (ii) a green tree becomes a burning tree if at least
one of its neighbors is burning; (iii) a tree can grow in an
empty site with probabilityp; (iv) a tree without burning
nearest neighbors becomes a burning tree with probability
f. The model was first studied in the casef ­ 0 for
the limit of very slow tree growth (p °! 0). In this
limit the critical behavior is trivial: The model shows
spiral-shaped fire fronts separated by a diverging length
j , p2np , wherenp . 1 [18]. In the casef . 0, the
system is supposed to exhibit SOC under the hypothesis
of a double separation of time scales: Trees grow fast
compared with the occurrence of lightnings and forest
clusters burn down much faster than trees grow. This
request is expressed by the double limitu ; fyp ! 0
andp ! 0. The critical state is characterized by a power
law distribution Pssd ­ s2t of the forest clusters ofs
sites (avalanches in the SOC terminology) and the average
cluster radius (the correlation length) scales asR , u2nR .

With the DDRG framework we are able to generalize
a previous RG scheme [12] in order to include the proper
treatment of the time scaling and to study the limitf ­ 0
(deterministic FFM). The dynamical rules of the FFM
are local and the set of dynamical parameters, defined by
m ­ h f, pj, is obtained explicitly in terms of the dynami-
cal operators acting on a single site, i.e.,k1jT j0l ­ p
and k2jT j1l ­ f. The relevant dynamical scales is de-
fined by the burning process which occurs with proba-
bility one. We define a cell-to-site transformation with
scale factorb ­ 2 or larger. The rules defining the
cell renormalization operatorR are standard geometri-
cal spanning conditions [19], and their explicit form can
be found in Ref. [15]. The above scheme defines a fi-
nite lattice truncation on four (two) sites cells ind ­ 2
(d ­ 1), and denoting by an indexa each cell configu-
ration, we have that

P
hsij °!

P
a. The renormalization

equations that define the renormalized parameters can be
conveniently written as

kSi jT
0jS0

i l ­

P
a

P
a0 ka0jTbz

jalWaP
a Wa

, (7)

wherejal and ja0l are the cell states which renormalize,
respectively, injS0

i l and jSil. We keep the subscript
i since the states refer now to a single coarse grained
site and not to a configuration of the system. WithWa

we denote the stationary statistical weight of eacha

configuration. This distribution is approximate following
the DDRG scheme in the lowest order [Eq. (4)], in which
the average steady-state densitieskrkl are obtained as a
function of m ­ h f, pj from the stationary solution of
dynamical mean field equations [20].

We focus our analysis in the critical region denoted
by the conditionf ø p ø 1, namely where the system
shows critical behavior. The time scaling factor is
obtained by imposing that the renormalized burning
process occurs with probability one (k0jT 0j2l ­ 1). In
d ­ 1 this condition is fulfilled up to second order in
f and p and givesz ­ 1, recovering the exact result
of Ref. [21]. This result is due to the fact that in
d ­ 1 there is only a possible way to span the cell,
and consequently no proliferations are generated. In
d ­ 2 one has to consider the average over different
paths, and new dynamical interactions are generated at
each RG step. This is a signature that we need an
approximation which truncates the parameter space after
each iteration so that it remains closed. This is done
by considering just the leading order inf and p in the
renormalization equations, and ignoring any proliferations
generated at each group iteration. With this scheme we
obtain z ­ 1, which is not an exact result also if in
good agreement with numerical simulations (z ­ 1.04
[22]). It is worth remarking that the DDRG allows one
to overcome the approximations present in the approach
of Ref. [12], where the time scaling was not properly
considered because of the assumption of an infinite time
scale separation. In addition the general scheme shown so
far provides the inroad towards a systematic improvement
of the results by introducing higher order correlations in
the stationary distribution as discussed in Ref. [23].

Once the time scale factor is set we can write recursion
relations forp and f, or equivalentlyu0 ­ xsu, pd and
p0 ­ ysu, pd, evaluating the probabilities that a coarse
grained cell grows or is struck by a lightning inbz steps.
The driving condition and recursion relations derivation is
long and tedious and the explicit equations are reported
elsewhere [15]. The flow diagram is stable with respect
to different coarse graining rules, and ford ­ 1 and
d ­ 2 we find a repulsive fixed point inuc ­ 0 and
pc ­ 0. The fixed point densities are obtained from the
driving condition and depend on the dimensionality. In
order to discuss the critical behavior we have to linearize
the recursion relations in the proximity of this fixed
point and to find the relevant eigenvalues of the diagonal
transformation:

l1 ­
≠u0

≠u

Ç
uc ,pc

, l2 ­
≠p0

≠p

Ç
uc ,pc

. (8)
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In d ­ 2 the largest eigenvalue is given byl1, which de-
termines the leading scaling exponentnR ­ ln by ln l1 ­
0.7 (for b ­ 2) obtained in Ref. [12]. The result is in
good agreement with numerical simulation (nR ­ 0.6)
[22]. In the limit f ­ 0 the critical behavior is gov-
erned by the second eigenvaluel2. This eigenvalue and
its relative exponent describes the behavior of the cor-
relation length in the deterministic FFM. As opposed
to l1, the value ofl2 depends on the absolute value of
the time scaling factor [24], and therefore could not be
obtained without the DDRG formalism. The numerical
value we obtain ind ­ 1, 2 is np ­ ln 2y ln l2 ­ 1.0,
which is in excellent agreement with the simulation results
np . 1 [18].

Our characterization of the flow diagram clarifies the
critical nature of the model. The FFM is critical only for
uc ­ 0, pc ­ 0. This implies thatu, p are thecontrol
parametersof the model, and the critical state is reached
only by a fine tuning of these parameters. Similar results
are obtained by applying the DDRG to the sandpile model
[15]. These results allow us to clarify the meaning of
SOC with respect to nonequilibrium critical phenomena.
In SOC literature it is often reported that the origin of
scale invariance in nature lies in the absence of tuning
parameter, like the critical temperature in Ising models. In
the renormalization group language this would imply that
no relevant parameters should be present. The situation
is, however, more subtle. It has been recognized that a
common characteristic of SOC systems is the presence of
two time scalesta, the typical relaxation (activity) time,
and td the external driving time scale (often an external
noise). In order to observe criticality the ratioT ­
taytd must be vanishingly small (T °! 0) [24,25].
With our approach we can recast the above concept in
more formal terms. Our RG analysis shows the time
scales ratioT is indeed thecontrol parameterof SOC
models. This parameter is the ratio betweenf, p, and
the burning time scale in the forest-fire model or the sand
addition and the avalanche dissipation in sandpiles, but is
always related to the ratio between different time scales.
From a theoretical point of view the critical nature of SOC
systems is not different from that of nonequilibrium phase
transitions. The peculiarity of these systems is that close
to the critical point the system is quite stable to changes
of the dynamical time scales. In fact, the reduced control
parameter, which is defined ase ­ sT 2 TcdyTc, in
SOC systems isT itself, beingTc ­ 0. This implies that
if e . 0, even relevant changes of the control parameter
(T °! nT and n , e21) do not drive the system far
from the critical region. Apparently the system would
not be affected by changes ofT , and in this sense
SOC systems are not very sensitive to fine tuning of the
control parameter. The meaning of SOC is then related
to the widespread existence of phenomena ruled by very
different time scales and not to the absence of relevant
control parameters as often reported in the literature.

A. V. is indebted with J. M. J. van Leeuwen for very
interesting discussions. The Center for Polymer Studies
is supported by the NSF.
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