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We investigate the critical behavior of a reaction-diffusion system exhibiting a continuous absorbing-state
phase transition. The reaction-diffusion system strictly conserves the total density of particles, represented as a
nondiffusive conserved field, and allows an infinite number of absorbing configurations. Numerical results
show that it belongs to a wide universality class that also includes stochastic sandpile models. We derive
microscopically the field theory representing this universality class.

PACS number~s!: 64.60.Ht, 05.50.1q, 05.65.1b, 05.70.Ln

The directed percolation~DP! @1# universality class is rec-
ognized as the canonical example of the critical behavior in
the transition from an active to a single absorbing state. This
universality class appears to be robust with respect to micro-
scopic modifications, and non-DP behavior emerges only in
the presence of additional symmetries, such as symmetric
absorbing states@2#, long-range interactions@3#, or infinitely
many absorbing states@4#.

Recently, a new universality class of absorbing-state
phase transitions~APT! @1# coupled to a nondiffusive con-
served field has been identified@5#. This class characterizes
the critical behavior of several models showing APT with a
dynamics that strictly conserves the density of particles, that
is represented by a conserved static~nondiffusive! field. The
models are tuned to criticality by varying the particle den-
sity, and exhibit an infinite number of absorbing states. This
universality class is particularly interesting because it em-
braces also the large group of stochastic sandpile models@6#
~and in particular, the Manna model@7#! which are the pro-
totypical examples that illustrate the ideas of self-organized
criticality ~SOC! @8#. These are driven dissipative models in
which sand~or energy! is injected into the system and dissi-
pated through the boundaries, leading eventually to a station-
ary state. In the limit of infinitesimally slow external driving,
the systems approach a critical state characterized by an ava-
lanchelike response. Recently, it has been pointed out that

this critical state is equivalent to the APT present in thefixed
energycase; that is, in automata with the same microscopic
rules defining the sandpile, but without driving or dissipation
@9–11#.

The numerical evidence for the existence of such a gen-
eral universality class@5# is corroborated by the observation
that all the models analyzed share the same structure and
basic symmetries; namely, a conserved and static noncritical
field dynamically coupled to a nonconserved order parameter
field, identified as the density of active particles. These ob-
servations have led to the conjecture that, in the absence of
additional symmetries,all stochastic models with an infinite
number of absorbing states in which the order parameter
evolution is coupled to a nondiffusive conserved field define
a unique universality class@5#.

In this Rapid Communication, we study the nondiffusive
field limit for the two species reaction-diffusion~RD! model
introduced in Ref.@12# ~see also Ref.@13#!. In this limit the
model has a phase transition with infinitely many absorbing
states, and it conserves the total number of particles that is
associated with a nondiffusive conserved field. We present
extensive numerical simulations of the model in two and
three dimensions, and determine the full set of critical expo-
nents. The obtained values are compatible with the new uni-
versality class conjectured in Ref.@5#. This definitely shows
the existence of a broad universality class that includes RD
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processes, stochastic sandpile models, and lattice gases with
the same symmetries. For the present RD model, it is pos-
sible to derive microscopically a field theory~FT! descrip-
tion. The resulting action and Langevin equations exhibit the
basic symmetries that characterize this universality class, and
represent a microscopic derivation of a FT for sandpile mod-
els. Notably, the resulting FT description recovers a phenom-
enological Langevin approach proposed for sandpiles@9,10#.
The analysis provided here is a very promising path for a
coherent description of several nonequilibrium critical phe-
nomena now rationalized in a single universality class.

We consider the two-component RD process identified by
the following set of reaction equations:

B→A with ratek1, ~1!

B1A→2B with ratek2. ~2!

In this system,B particles diffuse with diffusion rateDB
[D, and A particlesdo not diffuse; that is, DA50. This
corresponds to the limitDA→0 of the model introduced in
Ref. @12#. From the rate Eqs.~1! and ~2!, it is clear that the
dynamics conserves the total density of particlesr5rA
1rB , wherer i is the density of componenti 5A,B. In this
model, the only dynamics is due toB particles, which we
identify as active particles.A particles do not diffuse and
cannot generate spontaneouslyB particles. More specifically,
A particles can only move via the motion ofB particles that
later on transform intoA through Eq.~2!. In the absence ofB
particles,rA is thus a static field. This implies that any con-
figuration devoid ofB particles is an absorbing state in which
the system is trapped forever.

It is easy to see@12# that the RD process defined by Eqs.
~1! and ~2! exhibits a phase transition from an active to an
absorbing phase for a nontrivial value of the total particle
densityr5rc . The critical valuerc depends upon the reac-
tion ratesk1 ,k2. The nature of this phase transition forDA
Þ0 has been discussed in@12#; the static field case (DA
50), on the other hand, has never been explored to our
knowledge. It is clear that the static field conserved RD~SF-
CRD! model allows, for any densityr, an infinite number~in
the thermodynamic limit! of absorbing configurations, in
which there are noB particles. This is the key difference with
respect to the case in whichDAÞ0. In the latter case a con-
figuration devoid ofB particles consists of many diffusingA
particles. In the long run, all particles can visit all sites in the
lattice, and therefore, in a statistical sense, all configurations
with a fixed number ofA’s are equivalent and the absorbing
state can be considered unique@14#.

The SFCRD model seems to possess all the required sym-
metries~stochastic dynamics, many absorbing states, static
conserved field! for being part of the universality class con-
jectured in Ref.@5#. In order to test this possibility, we have
performed numerical simulations of the model in a
d-dimensional hypercubic lattice withN5Ld sites. Each site
can store any number ofA andB particles; that is, our model
can be represented by bosonic variables. Initial conditions
are generated by randomly placingNrA

(0) particles A and
NrB

(0) particles B, corresponding to a particle densityr
5rA

(0)1rB
(0) . The results are independent of the particular

initial ratio rA
(0)/rB

(0) , apart from very early time transients.

The dynamics proceeds in parallel. Each time step, we up-
date the lattice according to the following rules:~a! Diffu-
sion: on each lattice site, eachB particles moves into a ran-
domly chosen nearest neighbor site.~b! After all sites have
been updated for diffusion, we perform the reactions:~i! On
each lattice site, eachB particle is turned into anA particle
with probability r 1. ~ii ! At the same time, eachA particle
becomes aB particle with probability 12(12r 2)nB, where
nB is the total number ofB particles in that site. This corre-
sponds to the average probability for anA particle of being
involved in the reaction of Eq.~2! with any of theB particles
present on the same site. The probabilitiesr 1 and r 2 are
proportional to the reaction ratesk1 and k2 defined in Eqs.
~1! and ~2!. The order parameter of the system isrB , mea-
suring the density of dynamical entities.

As we varyr, the system exhibits a continuous transition
separating an absorbing phase (rB50) from an active phase
(rBÞ0) at a critical pointrc . The order parameter is null
for r,rc , and follows a power lawrB;(r2rc)

b, for r
>rc . The system correlation lengthj and timet, which
define the exponential relaxation of space and time correla-
tion functions, diverge asr→rc @1#. In the critical region the
system is characterized by a power law behavior,j
;ur2rcu2n' andt;ur2rcu2n i. The dynamical critical ex-
ponent is defined ast;jz, with z5n i /n' . These exponents
fully determine the critical behavior of the stationary state of
the model@1#.

We have studied the steady-state properties of the model
in d52 and 3, by performing numerical simulations for sys-
tems with size ranging up toL5512 andL5125, respec-
tively. Averages were performed over 1042105 independent
initial configurations. The values considered for the ratesr i
arer 150.1 andr 250.5 in d52, andr 150.4 andr 250.5 in
d53. From the finite-size scaling analysis for APT@1#, we
obtain the critical point (rc50.3226(1) in d52 and rc
50.95215(15) ind53) and the complete set of critical ex-
ponents. A detailed presentation of these results will be re-
ported elsewhere. In Fig. 1 we show as an example the order

FIG. 1. Order parameter behavior~stationary density ofB par-
ticles! as a function ofD5r2rc for the reaction-diffusion model in
d52 and 3. The slope of the straight lines isb50.65 ind52 and
b50.86 ind53.
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parameter behavior with respect to the control parameterD
5r2rc , from which it is possible to calculate directly theb
exponent. The results obtained ind52 and 3 are reported in
Tables I and II and compared with the Manna sandpile
model in the respective dimension.

In APT it is possible to obtain more information on the
critical state by studying the evolution~spread! of activity in
systems that start close to an absorbing configuration@15#. In
eachspreadingsimulation, a small perturbation is added to
an absorbing configuration. It is then possible to measure the
spatially integrated activityN(t), averaged over all runs, and
the survival probabilityP(t) of the activity aftert time steps.
Only at the critical point do we have power law behavior for
these magnitudes. In the case of many absorbing states, the
choice of the initial absorbing state is not unique@16#. There
are several methods to perform spreading exponents in this
case, and we have followed the technique outlined in Ref.
@5#, which amounts to the study of critical spreading with the
so-called ‘‘natural initial conditions’’ atr5rc @16#. The
probability distributionPs(s) of having a spreading event
involving s sites, as well as the the quantitiesN(t) andP(t),
can thus be measured. At criticality, the only characteristic
length is the system sizeL, and we can write the scaling
forms Ps(s)5s2tsF1(s/LD), N(t)5thF2(t/Lz), and P(t)
5t2dF3(t/Lz) @15#. The scaling functionsFi(x) are decreas-
ing exponentially forx@1, and we have considered that the
spreading characteristic time and size are scaling asLz and
LD, respectively. In this case simulations were performed for
systems of size up toL51024 in d52 and L5200 in d

53, averaging over at least 53106 spreading experiments.
The new scaling exponentsts , D, d, and h are measured
using the now standard moment analysis technique@17,18#.
The resulting exponents are summarized in Tables I and II,
and can be compared with the avalanche exponents usually
measured in stochastic sandpile models. As a further consis-
tency check of our results, we have checked that our expo-
nents fulfill all scaling and hyperscaling relations in standard
APT. Despite the apparent diversity in the dynamical rules,
we can safely include that the SFCRD and the Manna mod-
els are in the same universality class.

From a theoretical point of view, the SFCRD allows the
construction of a field theory description that also will rep-
resent the critical behavior of all models belonging to the
same universality class. The construction of the FT follows
standard steps@20#, and it consists of recasting the master
equation implicit in Eqs.~1! and ~2! into a ‘‘second quan-
tized form’’ via a set of creation and annihilation bosonic
operators for particlesA and B on each site. It is then pos-
sible to map the solution of the master equation into a path
integral over the density fields, weighted by the exponential
of a functional actionS @20#. In our case, we can quote the
elegant results of Ref.@12#, just considering that we have
DA50. The action of the FT is thus

S5E dxdt$c̄@] t1~r 2D¹2!#c1f̄@] tf2l¹2c#

1u1c̄c~c2c̄ !1u2c̄c~f1f̄ !1v1c̄2c2

1v2c̄c~cf̄2c̄f!1v3c̄cf̄f%, ~3!

wherec and f are auxiliary fields, defined such that their
average values coincide with the average density ofB par-
ticles and the total density of particles, respectively,c̄ andf̄
are response fields, and the coupling constants are related to
the reaction rateski . Namely, D represents the diffusion
coefficient ofB particles,l is initially also proportional toD,
andr is the critical parameter that is related to the difference
of the total density with respect to the critical densityrc . By
standard power-counting analysis, one realizes that the re-
duced couplingsui /D have critical dimensiondc

(1)54, while
the couplingsv i /D have on their partdc

(2)52. This means
that when applying the renormalization group~RG! and per-
forming a perturbative expansion around the critical dimen-
sion 4, one could in principle drop all the couplingsv i @21#.
The critical parameter of this theory is the density of active
sitesc, while f serves just to propagate interactions. We can
exploit some symmetry considerations of the FT to relate the
physics of the system to the corresponding analytical de-
scription. By neglecting irrelevant terms in the power-
counting analysis, action~3! is invariant under the shift
transformation

f→f85f1d, r→r 85r 2u2d, ~4!

whered is any constant. This symmetry has a very intuitive
meaning: If we increase everywhere the density of particles
by an amountd, we must be closer to the critical point by an
amount proportional tod. In other words, this symmetry rep-
resents the conserved nature of the system. It is also interest-
ing to write the set of corresponding Langevin equations~up
to the irrelevant termsv i) by integrating out the response
fields c̄,f̄ in the actionS,

TABLE I. Critical exponents for spreading and steady-state ex-
periments ind52. Figures in parenthesis indicate the statistical
uncertainty in the last digit. Manna exponents from Refs.
@5,10,18,19#.

Steady-state exponents
b b/n' n' z n i

SFCRD 0.65(1) 0.78(2) 0.83(3) 1.55(5) 1.29(8)
Manna 0.64(1) 0.78(2) 0.82(3) 1.57(4) 1.29(8)

Spreading exponents
ts D z h d

SFCRD 1.27(1) 2.75(1) 1.54(2) 0.29(2) 0.50(2)
Manna 1.28(1) 2.76(1) 1.55(1) 0.30(3) 0.48(2)

TABLE II. Critical exponents for spreading and steady-state
experiments ind53. Figures in parenthesis indicate the statistical
uncertainty in the last digit. Manna exponents from Refs.
@5,10,18,19#.

Steady-state exponents
b b/n' n' z n i

SFCRD 0.86(2) 1.39(4) 0.62(3) 1.80(5) 1.12(8)
Manna 0.84(2) 1.40(2) 0.60(3) 1.80(5) 1.08(8)

Spreading exponents
ts D z h d

SFCRD 1.41(2) 3.32(2) 1.74(2) 0.16(2) 0.76(3)
Manna 1.43(2) 3.31(2) 1.75(2) 0.16(2) 0.75(3)
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] tc5D¹2c2rc2u1c22u2cf1hc , ~5!

] tf5l¹2c1hf . ~6!

Here,hc andhf are noise terms with zero mean and corre-
lations ^hc(x,t)hc(x8,t8)&52u1c(x,t)d(x2x8)d(t2t8),
^hc(x,t)hf(x8,t8)&52u2c(x,t)d(x2x8)d(t2t8) and
^hf(x,t)hf(x8,t8)&50. The noise terms have a multiplica-
tive nature@22#, that is the standard form in APT. Note that
v i couplings of Eq.~3! contribute to noises correlations with
higher order terms. These equations have a very clear physi-
cal interpretation. The fieldf is conserved@23# and static,
i.e., it only diffuses via the activity ofB particles, repre-
sented by the fieldc. On its turn, the fieldc is locally
coupled to the fieldf, but is nonconserved. Noticeably, this
set of equations recovers~up to the discarded couplingsv i)
the Langevin description proposed on a phenomenological
level for the sandpiles in Refs.@9,10#, with the extra infor-
mation of the cross-correlation term̂hchf&. Indeed, the sto-
chastic sandpile model has the same basic symmetries of the
present RD model, once the local density fieldr is replaced
by the local sand-grain~energy! density and the order param-
eter is identified with the density of toppling sites field
@9,10#. It is then natural to expect that the very same basic
structure is reflected in a unique theoretical description@24#.

The complete RG analysis of the field theory would allow
us to extract estimates for the critical exponents to compare

with simulations ind52 and 3. Unfortunately, some severe
technical problems are encountered in this case. In general,
as pointed out in Ref.@12#, the couplingsv i become relevant
and should be taken into account in the RG analysis. The
importance of the couplingsv i can be argued by the change
of the energy shift symmetry, Eq.~4!, in the case of the full
action Eq.~3!. Second, and more important, is the presence
of the singular bare propagator for the fieldf, which cannot

be regularized by adding a mass termm2ff̄, since it will
obviously break the symmetry~4!. This singular propagator
gives rise to divergences in the RG perturbative expansions,
and the results of Ref.@12# cannot be extended ‘‘tout-court’’
to the limit DA→0. In particular, some Feynman diagrams in
the e-expansion presented in Refs.@12,13# are proportional
to 1/DA . Hence, the limitDA→0 in the theory withDA

Þ0 is nonanalytic; any infinitesimal amount of diffusion in
the energy field renormalizes to a finite value, and definitely
changes the universality class of the model. Work is in
progress to provide a suitable regularization that will allow
an e-expansion calculation of the critical exponents.
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