I R ]
I s Northeastern University

Physics Faculty Publications Department of Physics

November 01,2000

Field theory of absorbiné phase transitions with a
nondiffusive conserved field

R Pastor-Satorras

A Vespignani
Northeastern University

Recommended Citation

Pastor-Satorras, R and Vespignani, A, "Field theory of absorbing phase transitions with a nondiffusive conserved field" (2000). Physics
Faculty Publications. Paper 202. http://hdl.handle.net/2047/d20002162

This work is available open access, hosted by Northeastern University.


http://iris.lib.neu.edu/physics_fac_pubs
http://iris.lib.neu.edu/physics
http://hdl.handle.net/2047/d20002162

PHYSICAL REVIEW E

STATISTICAL PHYSICS, PLASMAS, FLUIDS,
AND RELATED INTERDISCIPLINARY TOPICS

THIRD SERIES, VOLUME 62, NUMBER 5 PART A NOVEMBER 2000

RAPID COMMUNICATIONS

The Rapid Communications section is intended for the accelerated publication of important new results. Since manuscripts submitted
to this section are given priority treatment both in the editorial office and in production, authors should explain in their submittal letter
why the work justifies this special handling. A Rapid Communication should be no longer than 4 printed pages and must be accompanied
by an abstract. Page proofs are sent to authors.
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We investigate the critical behavior of a reaction-diffusion system exhibiting a continuous absorbing-state
phase transition. The reaction-diffusion system strictly conserves the total density of particles, represented as a
nondiffusive conserved field, and allows an infinite number of absorbing configurations. Numerical results
show that it belongs to a wide universality class that also includes stochastic sandpile models. We derive
microscopically the field theory representing this universality class.

PACS numbeps): 64.60.Ht, 05.50t+q, 05.65:+b, 05.70.Ln

The directed percolatioDP) [1] universality class is rec- this critical state is equivalent to the APT present infiked
ognized as the canonical example of the critical behavior irenergycase; that is, in automata with the same microscopic
the transition from an active to a single absorbing state. Thisules defining the sandpile, but without driving or dissipation
universality class appears to be robust with respect to micrd9—11].
scopic modifications, and non-DP behavior emerges only in  The numerical evidence for the existence of such a gen-
the presence of additional symmetries, such as symmetrieral universality clasg5] is corroborated by the observation
absorbing statel®2], long-range interactions3], or infinitely  that all the models analyzed share the same structure and
many absorbing statgg]. basic symmetries; namely, a conserved and static noncritical

Recently, a new universality class of absorbing-statdield dynamically coupled to a nonconserved order parameter
phase transition$APT) [1] coupled to a nondiffusive con- field, identified as the density of active particles. These ob-
served field has been identifi¢d]. This class characterizes servations have led to the conjecture that, in the absence of
the critical behavior of several models showing APT with aadditional symmetriesall stochastic models with an infinite
dynamics that strictly conserves the density of particles, thabumber of absorbing states in which the order parameter
is represented by a conserved stétiondiffusive field. The  evolution is coupled to a nondiffusive conserved field define
models are tuned to criticality by varying the particle den-a unique universality claskb].
sity, and exhibit an infinite number of absorbing states. This In this Rapid Communication, we study the nondiffusive
universality class is particularly interesting because it emf{ield limit for the two species reaction-diffusigiRD) model
braces also the large group of stochastic sandpile m¢égls introduced in Ref[12] (see also Refl13]). In this limit the
(and in particular, the Manna modeéf]) which are the pro- model has a phase transition with infinitely many absorbing
totypical examples that illustrate the ideas of self-organizedtates, and it conserves the total number of particles that is
criticality (SOQ [8]. These are driven dissipative models in associated with a nondiffusive conserved field. We present
which sand(or energy is injected into the system and dissi- extensive numerical simulations of the model in two and
pated through the boundaries, leading eventually to a statiorthree dimensions, and determine the full set of critical expo-
ary state. In the limit of infinitesimally slow external driving, nents. The obtained values are compatible with the new uni-
the systems approach a critical state characterized by an aveersality class conjectured in R¢g]. This definitely shows
lanchelike response. Recently, it has been pointed out thdlhe existence of a broad universality class that includes RD
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processes, stochastic sandpile models, and lattice gases wi ' '
the same symmetries. For the present RD model, it is pos
sible to derive microscopically a field theof¥T) descrip-
tion. The resulting action and Langevin equations exhibit the
basic symmetries that characterize this universality class, an
represent a microscopic derivation of a FT for sandpile mod-
els. Notably, the resulting FT description recovers a phenom- -
enological Langevin approach proposed for sandpBek0]. @
The analysis provided here is a very promising path for a
coherent description of several nonequilibrium critical phe-
nomena now rationalized in a single universality class.

We consider the two-component RD process identified by
the following set of reaction equations:

B—A with rateky, (1)
107 s =
B+A—2B with ratek,. 2) 10 A 10
In this system,B particles diffuse with diffusion rat®g FIG. 1. Order parameter behavi(stationary density oB par-

=D, and A particlesdo not diffuse that is, Dp=0. This ticles) as a function oA = p— p, for the reaction-diffusion model in
corresponds to the limib,—0 of the model introduced in d=2 and 3. The slope of the straight linesds-0.65 ind=2 and
Ref.[12]. From the rate Eqg1) and(2), it is clear that the B=0.86ind=3.
dynamics conserves the total density of particles pp
+pg, Wherep; is the density of componemt=A,B. In this  The dynamics proceeds in parallel. Each time step, we up-
model, the only dynamics is due ® particles, which we date the lattice according to the following rulds) Diffu-
identify as active particles.A particles do not diffuse and sjon: on each lattice site, eaghparticles moves into a ran-
cannot generate spontaneouBlparticles. More specifically, domly chosen nearest neighbor site) After all sites have
A particles can only move via the motion Bfparticles that  peen updated for diffusion, we perform the reactiailsOn
later on transform inté\ through Eq(2). In the absence @  each lattice site, eacB particle is turned into ar particle
particles,p, is thus a static field. This implies that any con- with probability r,. (i) At the same time, each particle
figuration devoid oB particles is an absorbing state in which becomes @ particle with probability - (1—r,)"8, where
the system is trapped forever. ng is the total number oB particles in that site. This corre-
Itis easy to se¢12] that the RD process defined by Egs. sponds to the average probability for Arparticle of being
(1) and (2) exhibits a phase transition from an active to aninvolved in the reaction of Eq2) with any of theB particles
absorbing phase for a nontrivial value of the total partiClepresent on the same site. The probabiiiti'qsand r, are
densityp=p.. The critical valuep. depends upon the reac- proportional to the reaction ratés andk, defined in Egs.
tion rateSkl,kz. The nature of this phase transition ibrA (l) and (2) The order parameter of the Systen‘p'@] mea-
#0 has been discussed [ﬂ.z:i, the static field CaSE[IA Suring the density of dynamica| entities.
=0), on the other hand, has never been explored to our As we varyp, the system exhibits a continuous transition
kn0W|edge. It is clear that the static field conserved (M' Separating an absorbing pha%(: 0) from an active phase
CRD) model allows, for any density, an infinite numbefin  (,,+0) at a critical pointp.. The order parameter is null
the thermodynamic limjt of absorbing configurations, in fqor p<pc, and follows a power lawg~(p—po)?, for p
which there are n® particles. This is the key difference with =p.. The system correlation length and time 7, which
respect to the case in whidh,#0. In the latter case a con- define the exponential relaxation of space and time correla-
figuration devoid ofB particles consists of many diffusi®y  tjon functions, diverge as— p [1]. In the critical region the

lattice, and therefore, in a statistical sense, all configurations.|, —, |~” and 7~ |p— p.| ~“l. The dynamical critical ex-

state can be considered unicuet]. _ fully determine the critical behavior of the stationary state of
The SFCRD model seems to possess all the required synhe model[1].

metries(stochastic dynamics, many absorbing states, static \ve have studied the steady-state properties of the model
conserved fieldfor being part of the universality class con- i, =2 and 3, by performing numerical simulations for sys-
jectured in Ref[5]. In order to test this possibility, we have (ems with size ranging up th=512 andL =125, respec-
performed numerical simulations of dth? model in - ayyely. Averages were performed over“010° independent
d-dimensional hypercubic lattice witi=L" sites. Each site jyitia| configurations. The values considered for the rates
can store any number &f andB patrticles; that is, our model arer,=0.1 andr,=0.5 ind=2, andr,=0.4 andr,=0.5 in

can be represented by bosonic variables. Initial conditiong|— 3~ From the finite-size scaling analysis for APT], we

are generated by randomly placiigp}” particlesA and  optain the critical point =0.3226(1) ind=2 and p,
Np) particles B, corresponding to a particle densify — =0.95215(15) ind=3) and the complete set of critical ex-
=pi)+p. The results are independent of the particularponents. A detailed presentation of these results will be re-
initial ratio p{®/pY), apart from very early time transients. ported elsewhere. In Fig. 1 we show as an example the order
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TABLE I. Critical exponents for spreading and steady-state ex-=3, averaging over at least>&10° spreading experiments.
periments ind=2. Figures in parenthesis indicate the statistical The new scaling exponents,, D, 6, and  are measured
uncertainty in the last digit. Manna exponents from Refs.using the now standard moment analysis technidire18|.

[5,10,18,19. The resulting exponents are summarized in Tables | and I,
and can be compared with the avalanche exponents usually

Steady-state exponents measured in stochastic sandpile models. As a further consis-

B Blv, v, z Y| tency check of our results, we have checked that our expo-

nents fulfill all scaling and hyperscaling relations in standard

SFCRD ~ 0.65(1) 0.78(2) 0.83(3) 155(5) 1.29(8) ApT Despite the apparent diversity in the dynamical rules,

Manna  0.64(1) 0.78(2) 0.82(3) 1.57(4) 1.29(8) we can safely include that the SFCRD and the Manna mod-
Spreading exponents els are in the same universality class.

Ts D z 7 ) From a theoretical point of view, the SFCRD allows the
construction of a field theory description that also will rep-
SFCRD 1.27(1)  2.75(1)  154(2)  0.29(2)  0.50(2) yegent the critical behavior of all models belonging to the
Manna  1.28(1) 2.76(1) 1.55(1) 0.30(3) 0.48(2) same universality class. The construction of the FT follows
standard stepf20], and it consists of recasting the master
) ) equation implicit in Egs(1) and (2) into a “second quan-
parameter behavior with respect to the control paramgter tized form” via a set of creation and annihilation bosonic
=p—pc, from which it is possible to calculate directly tile  operators for particles and B on each site. It is then pos-
exponent. The results obtainedds=2 and 3 are reported in sible to map the solution of the master equation into a path
Tables | and Il and compared with the Manna sandpileintegral over the density fields, weighted by the exponential
model in the respective dimension. of a functional actionS[20]. In our case, we can quote the

In APT it is possible to obtain more information on the elegant results of Ref.12], just considering that we have
critical state by studying the evolutidspread of activity in ~ Da=0. The action of the FT is thus
systems that start close to an absorbing configurafiéh In
eachspreadingsimulation, a small perturbation is added to szf dxdt{y[ g+ (r —DV?)]y+ ¢l a1 —AVZy]
an absorbing configuration. It is then possible to measure the
spatially integrated activitil(t), averaged over all runs, and T - e 22
the survival probabilityP(t) of the activity aftert time steps. FULPI— P+ Ui Pt G TuayTY
Only at the (_:ritical point do we have power law t_)ehavior for + o h(hp— hd) +vaihd b}, 3)
these magnitudes. In the case of many absorbing states, the N . _ .
choice of the initial absorbing state is not uniddé]. There ~ Wherey and ¢ are auxiliary fields, defined such that their
are several methods to perform spreading exponents in th@&verage values coincide with the average densit3 plar-
case, and we have followed the technique outlined in Refticles and the total density of particles, respectivéhand ¢
[5], which amounts to the study of critical spreading with theare response fields, and the coupling constants are related to
so-called “natural initial conditions” atp=p. [16]. The the reaction ratek;. Namely, D represents the diffusion
probability distributionP(s) of having a spreading event coeff|_C|ent ofB_ _partlcles,)\ is |n|t|aIIy_ also proportlonal_t(D,
involving s sites, as well as the the quantitdét) andP(t), ~ andr is the critical parameter that is related to the difference
can thus be measured. At criticality, the only characteristif the total density with respect to the critical density. By
length is the system sizk, and we can write the scaling Standard power-counting analysis, one .rea(lllz)es that the re-
forms P(s)=s "sF,(s/LP), N(t)=t7F,(t/L?), and P(t) duced cogphngs:i/D have cnucgl dlmer;smldC =_4, while
—t~97,(t/L?) [15]. The scaling functiong;(x) are decreas- the couplingsv; /D have on their part{”)=2. This means
ing exponentially fox>1, and we have considered that the that when applying the renormalization grolG) and per-
spreading characteristic time and size are scaling“aand f‘?fm'”g a perturba_ltlve xpansion around the CT"'C""' dimen-
LD, respectively. In this case simulations were performed foSion 4 one could in principle drop all the couplings[21].
systems of size up t&=1024 ind=2 andL=200 in d T'he crmca] parameter.of this theory is t.he den_sny of active

sitesys, while ¢ serves just to propagate interactions. We can

exploit some symmetry considerations of the FT to relate the
physics of the system to the corresponding analytical de-
scription. By neglecting irrelevant terms in the power-

TABLE II. Critical exponents for spreading and steady-state
experiments ird= 3. Figures in parenthesis indicate the statistical
uncertainty in the last digit. Manna exponents from Refs.

[5,10,18,19. counting analysis, actiori3) is invariant under the shift
transformation
Steady-state exponents r_ e
d—d'=¢dp+6, r—r'=r—uyd, 4
B Blv, v, z V|

where é is any constant. This symmetry has a very intuitive
meaning: If we increase everywhere the density of particles
by an amount, we must be closer to the critical point by an
amount proportional t@. In other words, this symmetry rep-

Ts D z 7 g resents the conserved nature of the system. It is also interest-
SFCRD  141(2) 3.32(2) 174(2) 0.6(2) 0.76(3) Ing to write the set of corresponding Langevin equatis
Manna 143(2) 331(2) 175(2) 0.16(2) 0.75(3) to the_lrr_elevant term®;) by integrating out the response
fields ¢, ¢ in the actionS,

SFCRD 0.86(2) 1.39(4) 0.62(3) 1.80(5) 1.12(8)
Manna 0.84(2) 1.40(2) 0.60(3) 1.80(5) 1.08(8)
Spreading exponents
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=DV 2y—rp—up®— U+ Ny (5) with simulations ind=2 and 3. Unfortunately, some severe
Gb=AV2y+ ©6) technical problems are encountered in this case. In general,
! Mg as pointed out in Ref12], the couplinge); become relevant

Here, 5, and ,, are noise terms with zero mean and Corre-_and should be taken inlto account in the RG analysis. The
lations  (7,(X,t) (X" ,t"))=2ush(x,t) 5(x—x")5(t—t"),  importance of the couplings; can be argued by the change
(my(X,t) pg(X' 1)) = —Uh(X,1) (x—x") (t—t") and of the energy shift symmetry, E¢4), in the case of the full
(n4s(x,1) py(x',t"))=0. The noise terms have a multiplica- action Eq.(3). Second, and more important, is the presence
tive nature[22], that is the standard form in APT. Note that of the singular bare propagator for the fiebd which cannot

v; couplings of Eq(3) contribute to noises correlations with pe regularized by adding a mass temi¢ ¢, since it will
higher order terms. These equations have a very clear physipviously break the symmetrd). This singular propagator
cal interpretation. The field is conserved23] and static, gives rise to divergences in the RG perturbative expansions,
.e., it only diffuses via the activity oB particles, repre-  gnq the results of Ref12] cannot be extendedtbut-court’
sented by the _f|eld/;. On_ its turn, the fieldy IS locally . tothe limitD,— 0. In particular, some Feynman diagrams in
coupled to the fieldp, but is nonconserved. Noticeably, this the e-expansion presented in Refd2,13 are proportional
Sﬁt of equa'_[ions reqoye(ep to the discardedhcouplingﬁl) . tP 1D, . Hence, the limitD,—0 in ,the theory withD p
Te\?e:_?(?rg&\gnsgre]dsgirllggoir? Sg;ggsl%? \?v?thatr? e Zl?gﬁg?of_glcaio is nonanalytic; any infinitesimal amount of diffusion in
s the energy field renormalizes to a finite value, and definitely

mation of the cross-correlation teqw,,7,). Indeed, the sto- : . o
chastic sandpile model has the same basic symmetries of tif8anges the universality class of the model. Work is in
progress to provide a suitable regularization that will allow

present RD model, once the local density figlds replaced | . .
by the local sand-graifenergy density and the order param- 21 €-€xpansion calculation of the critical exponents.

eter is identified with the density of toppling sites field  This work has been supported by the European Network
[9,10]. It is then natural to expect that the very same basiainder Contract No. ERBFM-RXCT980183. We thank D.
structure is reflected in a unique theoretical descripftis. Dhar, R. Dickman, P. Grassberger, H. J. Hilhorst, M.A. Mu-

The complete RG analysis of the field theory would allownoz, F. van Wijland, and S. Zapperi for helpful comments
us to extract estimates for the critical exponents to comparand discussions.
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