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The description of the Internet topology is an important open problem, recently tackled with the
introduction of scale-free networks. We focus on the topological and dynamical properties of real Internet
maps in a three-year time interval. We study higher order correlation functions as well as the dynamics
of several quantities. We find that the Internet is characterized by nontrivial correlations among nodes
and different dynamical regimes. We point out the importance of node hierarchy and aging in the Internet
structure and growth. Our results provide hints towards the realistic modeling of the Internet evolution.

DOI: 10.1103/PhysRevLett.87.258701 PACS numbers: 89.20.Hh, 05.70.Ln, 87.23.Ge, 89.75.Hc

Complex networks play an important role in the under-
standing of many natural systems [1,2]. A network is a
set of nodes and links, representing individuals and the
interactions among them, respectively. Despite this simple
definition, growing networks can exhibit a high degree of
complexity, due to the inherent wiring entanglement occur-
ring during their growth. The Internet is a capital example
of growing network with technological and economical
relevance; however, the recollection of router-level maps
of the Internet has received the attention of the research
community only very recently [3–5]. The statistical
analysis performed so far has revealed that the Internet ex-
hibits several nontrivial topological properties (wiring
redundancy, clustering, etc.). Among them, the presence
of a power-law connectivity distribution [6,7] makes the
Internet an example of the recently identified class of
scale-free networks [8].

In this Letter, we focus on the dynamical properties of
the Internet. We shall consider the evolution of real In-
ternet maps from 1997 to 2000, collected by the National
Laboratory for Applied Network Research (NLANR) [3].
In particular, we will inspect the correlation properties
of nodes’ connectivity, as well as the time behavior of
several quantities related to the growth dynamics of new
nodes. Our analysis shows dynamical behavior with dif-
ferent growth regimes depending on the node’s age and
connectivity. The analysis points out two distinct wiring
processes: the first one concerns newly added nodes, while
the second is related to already existing nodes increasing
their interconnections. A feature introduced in this pa-
per refers to the Internet hierarchical structure, reflected
in a nontrivial scale-free connectivity correlation function.
Finally, we discuss recent models for the generation of
scale-free networks in the light of the present analysis of
real Internet maps. The results presented in this Letter
could help develop more accurate models of the Internet.

Several Internet mapping projects are currently de-
voted to obtaining high-quality router-level maps of the
Internet. In most cases, the map is constructed by using a

hop-limited probe (such as the UNIX trace-route tool) from
a single location in the network. In this case the result is a
“directed” map as seen from a specific point on the Inter-
net [5]. This approach does not correspond to a complete
map of the Internet because cross-links and other technical
problems (such as multiple internet provider aliases) are
not considered. Heuristic methods to take into account
these problems have been proposed [9]. However, it is not
clear if they are reliable and if the corresponding complete-
ness of maps can be constructed in this way. A different
representation of the Internet is obtained by mapping the
autonomous systems (AS) topology. Each AS number
approximately maps to an internet service provider (ISP)
and its links are inter-ISP connections. In this case it is
possible to collect data from several probing stations to
obtain complete interconnectivity maps [3,4]. In particular,
the NLANR project has been collecting data since Novem-
ber 1997, and it provides topological as well as dynamical
information on a consistent subset of the Internet. The first
November 1997 map contains 3180 AS, and it has grown
in time until the December 1999 measurement, consisting
of 6374 AS. In the following we will consider the graph
whose nodes represent AS and whose links represent the
connections between AS.

In dealing with the Internet as an evolving network, it is
important to discern whether or not it has reached a station-
ary state whose average properties are time independent.
As a first step, we analyzed the behavior in time of sev-
eral average quantities, such as the connectivity �k�, the
clustering coefficient �C�, and the average minimum path
distance �d�, of the network [10]. The first two quanti-
ties (see Table I) show a very slow tendency to increase in
time, while the average minimum path distance slowly de-
creases with time. A more clear-cut characterization of the
topological properties of the network is given by the con-
nectivity distribution, P�k�. In Fig. 1 we show the proba-
bility P�k� that a given node has k links to other nodes. We
report the distribution of snapshots of the Internet at dif-
ferent times. In all cases, we found a clear power-law

258701-1 0031-9007�01�87(25)�258701(4)$15.00 © 2001 The American Physical Society 258701-1



VOLUME 87, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 DECEMBER 2001

TABLE I. Average properties for three different years. �k� is
the average connectivity. �d� is the minimum path distance dij
averaged over every pair of nodes �i, j�. �C� is the clustering
coefficient Ci averaged over all nodes i, where Ci is defined as
the ratio between the number of links between the neighbors of
i and its maximum possible value ki �ki 2 1��2. The numbers
in parentheses indicate the statistical uncertainty from averaging
the values of the corresponding months in each year.

Year 1997 1998 1999

�k� 3.47(4) 3.62(5) 3.82(6)
�C� 0.18(1) 0.21(2) 0.24(1)
�d� 3.77(1) 3.76(2) 3.72(1)

behavior P�k� � k2g with g � 2.2 6 0.1. The distribu-
tion cutoff is fixed by the maximum connectivity of the
system and is related to the overall size of the Internet
map. On the other hand, the power-law exponent g seems
to be independent of time and in good agreement with pre-
vious measurements [6]. This evidence seems to point out
that the Internet’s topological properties have already set-
tled into a rather well-defined stationary state.

Initially, the modeling of the Internet considered algo-
rithms based on its static topological properties [11]. How-
ever, since the Internet is the natural outcome of a complex
growth process, the understanding of the dynamical pro-
cesses leading to its present structure must be considered
a fundamental goal. From this perspective, the Barabási-
Albert (BA) model (Refs. [8,12]) can be considered as a
major step forward in the understanding of evolving net-
works. Underlying the BA model is the preferential at-
tachment rule [8]; i.e., new nodes will link with higher
probability to nodes with an already large connectivity.
This feature is quantitatively accounted for by postulat-
ing that the probability of a new link attaching to an old

FIG. 1. The cumulated connectivity distribution for the 1997,
1998, and 1999 snapshots of the Internet. The power-law behav-
ior is characterized by a slope 21.2, which yields a connectivity
exponent g � 2.2.

node with connectivity ki, P�ki�, is linearly proportional to
ki , P�ki� � ki. This is an intuitive feature of the Internet
growth, where large provider hubs are more likely to estab-
lish connections than smaller providers. The BA model has
been successively modified with the introduction of several
ingredients in order to account for connectivity distribution
with 2 , g , 3 [13,14], local geographical factors [15],
wiring among existing nodes [16], and age effects [17].
While all these models reproduce the scale-free behavior
of the connectivity distribution, it is interesting to inspect
deeper the Internet’s topology to eventually find a few dis-
criminating features of the dynamical processes at the basis
of the Internet growth.

A first step in a more detailed characterization of the
Internet concerns the exploration of the connectivity
correlations. This factor is best represented by the con-
ditional probability Pc�k0 j k� that a link belonging to a
node with connectivity k points to a node with connec-
tivity k0. If this conditional probability is independent
of k, we are in the presence of a topology without any
correlation among the nodes’ connectivity. In this case,
Pc�k0 j k� � Pc�k0� � k0P�k0�, in view of the fact that
any link points to nodes with a probability proportional
to their connectivity. On the contrary, the explicit de-
pendence on k is a signature of nontrivial correlations
among the nodes’ connectivity, and the possible presence
of a hierarchical structure in the network topology. A
direct measurement of the Pc�k0 jk� function is a rather
complex task due to large statistical fluctuations. More
clear indications can be extracted by studying the quan-
tity �knn� �

P
k 0 k0Pc�k0 j k�; i.e., the nearest neighbors

average connectivity of nodes with connectivity k. In
Fig. 2, we show the results obtained for the Internet
map of 1998 which strikingly exhibit a clear power-law
dependence on the connectivity degree �knn� � k2n ,
with n � 0.5. This result clearly implies the existence
of nontrivial correlation properties for the Internet. The
primary known structural difference between Internet
nodes is the distinction between stub and transit do-
mains. Nodes in stub domains have links that go through
only the domain itself. Stub domains, on the other hand,
are connected via a gateway node to transit domains
that, on the contrary, are fairly well interconnected via
many paths. In other words, there is a hierarchy imposed
on nodes that is very likely at the basis of the above
correlation properties. As instructive examples, we report
in Fig. 2 the average nearest-neighbor connectivity for
the generalized BA model, with g � 2.2 [13], and the
fitness model described in Ref. [18], with g � 2.25, for
networks with the same size as the Internet snapshot
considered. While in the first case we do not observe any
noticeable structure with respect to the connectivity k, in
the latter we obtain a power-law dependence similar to
the experimental findings. The general analytic study of
connectivity correlations in growing network models can
be found in Ref. [19]. A detailed discussion of different
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FIG. 2. The average connectivity �knn� of the nearest neighbors
of a node depending on its connectivity k for the 1998 snap-
shot of the Internet, the generalized BA model with g � 2.2
(Ref. [8]), and the fitness model (Ref. [18]). The solid line has
a slope 20.5. The scattered results for very large k are due to
statistical fluctuations.

models is beyond the scope of this paper; however, it is
worth noticing that a k structure in correlation functions,
as probed by the quantity �knn�, does not arise in all
growing network models.

In order to inspect the Internet dynamics, we focus our
attention on the addition of new nodes and links into the
maps. In the three-year range considered, we keep track of
the number of links �new appearing between a newly intro-
duced node and an already existing node. We also monitor
the rate of appearance of links �old between already ex-
isting nodes. In Table II we see that the creation of new
links is governed by these two processes at the same time.
Specifically, the largest contribution to the growth is given
by the appearance of links between already existing nodes.
This clearly points out that the Internet growth is strongly
driven by the need for redundancy wiring and an increased
need for an available bandwidth for data transmission.

A customarily measured quantity in the case of growing
networks is the average connectivity �ki�t�� of new nodes
as a function of their age t. In Refs. [8,19] it is shown
that �ki�t�� is a scaling function of both t and the absolute
time of birth of the node t0. We thus consider the total
number of nodes born within a small observation win-

TABLE II. Monthly rate of new links connecting existing
nodes to new ��new� and old ��old� nodes.

Year 1997 1998 1999

�new 183(9) 170(8) 231(11)
�old 546(35) 350(9) 450(29)
�new��old 0.34(2) 0.48(2) 0.53(3)

dow Dt0, such that t0 � const with respect to the absolute
time scale that is the Internet lifetime. For these nodes,
we measure the average connectivity as a function of the
time t elapsed since their birth. The data for two different
time windows are reported in Fig. 3, where it is possible
to distinguish two different dynamical regimes: At early
times, the connectivity is nearly constant with a very slow
increase ��ki�t�� � t0.1	. Later, the behavior approaches
a power-law growth �ki�t�� � t0.5. While exponent es-
timates are affected by noise and limited time window
effects, the crossover between two distinct dynamical
regimes is compatible with the general aging form obtained
in Ref. [19]. In particular both the generalized BA model
[13] and the fitness model [18] present aging effects similar
to those obtained in real data. A more detailed comparison
would require quantitative knowledge of the parameters to
be used in the models and will be reported elsewhere.

A basic issue in the modeling of growing networks
concerns the preferential attachment hypothesis [8]. By
generalizing the BA model algorithm it is possible to define
models in which the rate P�k�, with which a node with
k links receives new nodes, is proportional to ka . The
inspection of the exact value of a in real networks is an
important issue since the connectivity properties strongly
depend on this exponent [14,20]. Here we use a simple
recipe that allows us to extract the value of a by studying
the appearance of new links. We focus on links emanating
from newly appeared nodes in different time windows
ranging from one to three years. We consider the frequency
m�k� of links that connect to nodes with connectivity k.
By using the preferential attachment hypothesis, this ef-
fective probability is m�k� � kaP�k�. Since we know

FIG. 3. The average connectivity of nodes borne within a small
time window Dt0, after a time t elapsed since their appearance.
Time t is measured in days. As a comparison we report the lines
corresponding to t0.1 and t0.5.
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FIG. 4. The cumulative frequency of links emanating from
new and existing nodes that attach to nodes with connectivity
k. The straight line corresponds to a slope 20.2. The flat tail
originates from the poor statistics at very high k values.

that P�k� � k2g, we expect to find a power-law behavior
m�k� � ka2g for the frequency. In Fig. 4, we report the
obtained results which show a clear algebraic dependence
m�k� � k21.2. By using the independently obtained value
g � 2.2, we find a preferential attachment exponent
a � 1.0, in good agreement with the result obtained with a
different analysis in Ref. [20]. We also performed a similar
analysis for links emanated by existing nodes, recovering
the same form of preferential attachment (see Fig. 4).

In summary, we have shown that the Internet map ex-
hibits a stationary scale-free topology, characterized by
nontrivial connectivity correlations. An investigation of the
Internet’s dynamics confirms the presence of a preferential
attachment behaving linearly with the nodes’ connectiv-
ity and identifies two different dynamical regimes during
the nodes’ evolution. We point out that very likely sev-
eral other factors, such as the nodes’ hierarchy, resource
constraints, and the real geographical location of nodes,
can influence the Internet evolution. The results reported
here could be relevant for a more realistic modeling of the
Internet growth and evolution, and could have implications
in the study of the resilience to attacks and spreading phe-
nomena in this network [21,22].
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