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Emergence of non-Fermi-liquid behavior due to Fermi surface reconstruction in the

underdoped cuprate superconductors

Tanmoy Das, R. S. Markiewicz, and A. Bansil
Physics Department, Northeastern University, Boston MA 02115, USA

(Dated: April 20, 2010)

We present an intermediate coupling scenario together with a model analytic solution where the
non-Fermi-liquid behavior in the underdoped cuprates emerges through the mechanism of Fermi
surface (FS) reconstruction. Even though the fluctuation spectrum remains nearly isotropic, FS
reconstruction driven by a density wave order breaks the lattice symmetry and induces a strong
momentum dependence in the self-energy. As the doping is reduced to half-filling, we find that
quasiparticle (QP) dispersion becomes essentially unrenormalized, but in sharp contrast the QP
spectral weight renormalizes to nearly zero. This opposite doping evolution of the renormalization
factors for QP dispersion and spectral weight conspires in such a way that the specific heat remains
Fermi liquid like at all dopings in accord with experiments.

PACS numbers: 71.10.Hf,71.18.+y,74.40.-n,74.72.Kf

I. INTRODUCTION

Understanding how ‘non-Fermi-liquid’ behavior arises
near the half-filled insulating state is one of the key ques-
tions for unraveling the physics of not only the cuprates
but that of correlated electron systems more generally.
Here we show how some aspects of the electronic spec-
trum which are difficult to understand in a conventional
Fermi liquid theory can be explained naturally in a model
of an antiferromagnetic Fermi liquid. Specifically, it has
been reported that the renormalization of the electronic
dispersion decreases with underdoping as half-filling is
approached,1 i.e. the quasiparticles (QPs) seem to ‘un-
dress’ in the underdoped regime. In sharp contrast, the
spectral weight of the QPs fades away on approaching the
insulator and renormalizes to zero at half-filling2,3, indi-
cating that these QPs are very fragile or ‘gossamer’-like4.
Within Fermi liquid theory the QP dispersion and spec-
tral weight should be renormalized by the same factor,
unless the self-energy has a strong momentum depen-
dence. However, fluctuations in the cuprates seem to be
relatively isotropic5,6, which would imply then that the
renormalization factor Zd for dispersion is roughly equal
to the renormalization factor Zω for the spectral weight.
This is clearly violated near the Mott insulating limit,
where Zd → 1 while Zω → 0. Added to these puzzling
findings is the fact that the electronic specific heat con-
tinues to behave more or less in a Fermi-liquid manner
over the entire doping range from the overdoped metal to
the insulator3,7–9. These results clearly demonstrate that
a non-Fermi-liquid or ‘strange metal’ superconductor
emerges from the Fermi-liquid background as doping is
reduced. Notably, there is considerable controversy over
what constitutes non-Fermi-liquid behavior and many
proposals have been made to understand its possible ori-
gin, ranging from preformed d−wave pairs10 to fluctu-
ating spin-density waves11, from the Hubbard12,13 and
t− J14 models to the anti-de Sitter/conformal field the-
ory (AdS-CFT) correspondence15.
Insight into the origin of non-Fermi-liquid behav-

ior comes from recent angle-resolved photoemission
spectroscopy (ARPES)16, Hall effect17, and quantum
oscillation18–20 experiments, which reveal the presence of
FS reconstruction as a robust feature of both electron and
hole doped cuprates, suggesting that the ground state in-
volves some superlattice order. In this article, we investi-
gate a model of the underdoped cuprates with a density
wave ordered ground state and find that when the Fermi
surface (FS) breaks into pockets, the self-energy devel-
ops a strong momentum dependence. Analytic forms for
various renormalization factors are presented to delineate
how the non-Fermi-liquid physics arising from FS recon-
structions can be understood at a quantitative level. Our
study thus provides a tangible model for reconciling the
seemingly contradictory doping evolutions of the QP dis-
persion, the QP spectral weight and the specific heat in
the cuprates.

The possibility of FS reconstruction in the cuprates
has been proposed many times since it was found that
the Hall density scales with doping21 – i.e., it is pro-
portional to the small pocket area rather than the large
FS. We model this FS reconstruction by assuming a spin
density wave (SDW) order which results in a nearly-
antiferromagnetic-Fermi-liquid (NAFL) phase22. In ad-
dition to SDW order, we have analyzed other candi-
dates for the competing order including charge, flux, or
d−density waves23 and find that the pseudogap symme-
try which is the essential ingredient for the origin of non-
Fermi-liquid physics is insensitive to the particular nature
of the competing order state. We calculate the self-energy
due to spin and charge fluctuations within a QP-GW for-
malism described in Appendix A. The model is known to
properly describe the high-energy ’waterfall’ features in
ARPES5,24,25 as well as the doping evolution of the opti-
cal spectra and the finite QP lifetime.26 Within the QP-
GW model the self-energy splits the spectrum into co-
herent in-gap states and an incoherent residue of the un-
doped upper and lower Hubbard bands (U/LHBs). With
underdoping, the in-gap states develop an SDW gap and
split into upper and lower magnetic bands (U/LMBs)23,
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and the resulting ‘four-band’ features are consistent with
quantum Monte Carlo (QMC) calculations27 [Appendix
A]. The involvement of a quantum critical point (QCP)
in the optimal doping regime where the SDW order dis-
appears is strongly suggestive of an intermediate strength
for correlations in the cuprates.26 Accordingly, there have
been several recent attempts to develop an intermedi-
ate coupling model for the cuprates starting from either
the weak-coupling limit, as in the present calculation,
or the strong-coupling limit28. Therefore, we compare
our results with experiments as well as with the varia-
tional cluster calculations of Paramekanti, Randeria and
Trevedi (PRT)28, which approach the problem from the
RVB limit.
This article is organized as follows. In sections IIA and

IIB, we investigate the doping evolution of the spectral
weight and that of dispersion renormalization, respec-
tively. The specific heat results are presented in Section
III. The discussion and conclusions are given in Sections
IV and V respectively. A summary of the underlying QP-
GW model is provided in Appendix A. Various renormal-
ization factors invoked are summarized in Appendix B for
the reader’s convenience. Appendices C and D address
details of analytic forms for the renormalization factors
and those of our specific heat evaluation.

II. NEARLY-ANTIFERROMAGNETIC-FERMI-
LIQUID RENORMALIZTION

FACTORS

A. Momentum density and spectral weight
renormalization

We evaluate the exact values of the renormalization
factors from FS discontinuities of spectral function mo-
ments Ml(k) of various order l,

∫ ∞

−∞

dωωlA(k, ω)f(ω) (1)

These moments provide important information about the
spectral weight distribution in energy and momentum
space as a function of doping.28 The spectral density
A(k, ω) involves both the coherent QP and the incoherent
part. Due to the Fermi function f(ω), the moments Ml

display singularities at the Fermi momentum kF which
are characteristic of coherent gapless quasiparticle exci-
tations. We consider first the zeroth order moment which
is simply the momentum density n(k).29–31 The interact-
ing FS is determined from the jump in n(k) at kF of the
quasiparticles. The magnitude of this jump defines the
spectral weight renormalization Zω. The incoherent part
in the spectral weight substantially modifies the shape of
n(k).
Fig. 1 shows maps of n(k) throughout the first Bril-

louin zone as a function of doping for Nd2−xCexCuO4

(NCCO) and hole doped La2−xSrxCuO4 (LSCO). In the
present NAFL case the combination of self-energy and

FIG. 1: (Color online) Momentum density, n(k) as calculated
using Eq. 1 is shown for various dopings for NCCO in (a-c)
and for LSCO in (d-f).

SDW coherence factors leads to characteristic structures
in n(k) at all dopings including half-filling. At half-
filling n(k) shows a maximum at the Γ−point and away
from that it decreases gradually and smoothly, from in-
side to outside the LDA-like FS [magenta solid line in
Fig. 1(a) and (d)]. As we dope the system with elec-
trons, the spectral weight increases at the Γ−point and
in addition, (π, 0) and its equivalent points largely gain
spectral weight due to the development of electron pock-
ets in NCCO [Fig. 1(b)]. With further increase of dop-
ing, the FS undergoes two topological transitions32,33 as
also reflected in the momentum density calculations here.
The first topological transition in n(k) occurs when the
LMB approaches the Fermi level (EF ) and forms hole-
like pockets at (±π/2,±π/2). For x = 0.15, the hole
pockets are fully formed and they as well as the electron
pockets increase in size with further doping. At x = 0.18
the electron and hole pockets merge at the hot-spot, the
SDW gap collapses, and the full metal-like n(k) appears
[second topological transition]. For hole doping, the FS
topological transition is complimentary to the electron
doped one and here the hole pocket appears first as shown
in Fig. 1(e) and above the QCP, the electron-like full FS
appears in Fig. 1(f).

A more quantitative account of the effect of self-energy
corrections on the residual coherent QP spectral weight
is provided in Fig. 2(a), which shows n(k) along high-
symmetry lines for NCCO as well as LSCO. Some im-
portant effects of correlations on the insulating state
should be noted here. At x = 0, n[k = Γ] ≈ 0.9 and
n[k = (π, π)] ≈ 0.1, implying that the self-energy redis-
tributes the spectral weight from the filled states to the
unfilled regions even in the insulating phase. PRT [with
a different parameter set t = 300 meV, t′ = −t/4 and
U = 12t] find a similar result n[k = Γ] ≈ 0.8528. At
half-filling n(k) is a smoothly varying function through-
out the BZ, due to the absence of gapless quasiparti-
cle for both NCCO (green line) and LSCO (not shown).
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As we increase electron doping, the spectral weight at Γ
[(π, π)] gradually increases [decreases] whereas the spec-
tral weight increases rapidly at (π, 0), due to the devel-
opment of electron pockets, while discontinuities in n(k)
arise at the Fermi surface. In the underdoped region,
n(k) shows additional singularities along Γ → (π, 0)) and
(π/2, π/2) → (π, π) due to the presence of shadow bands
as marked by gold arrows. Since the shadow bands are
usually weak in the cuprates34–38, experimental data are
available predominantly along the arcs – that is, along
the antinodal direction for NCCO and nodal direction for
LSCO. These are compared with our theory in Fig. 2(b),
effects of the ARPES matrix element notwithstanding.39

We define a coherent spectral weight renormalization
factor from the discontinuities in n(k):

Zω = ∆n(kF ), (2)

plotted as a function of doping for NCCO in Fig. 2(b)28.
For the main band in NCCO along the antinodal direc-
tion, the UMB crosses the Fermi level at all finite dopings
(electron pocket) and Zω decreases smoothly with un-
derdoping but vanishes discontinuously at x = 0. Shown
also in Fig. 2(b) is the conventional paramagnetic Green’s
function renormalization factor

Z0
ω =

(

1−
∂Σ′(ω)

∂ω

)−1

ω=0

. (3)

It can be seen that the doping dependence in Z0
ω is very

weak and strikingly opposite to Zω. Thus the strong
doping dependence of Zω is governed by the SDW gap
collapse. In Appendix C we derive an approximate ana-
lytical form for the SDW corrected renormalization factor
ZSDW
ω (at ω = 0) in terms of the SDW coherence factors

[see Eq. C6]

ZSDW
ω =

Z0
ω

2



1±

(

1 +

(

2∆

ξkF
− ξkF+Q

)2
)−1/2



 . (4)

Note however that kF is the true Fermi momentum in
the SDW state, not the LDA one. We see in Fig 2(b)
that this simple analytic form captures the essential dop-
ing dependence of the full Zω. As doping increases, the
weight of the shadow bands (above the magnetic Bril-
louin zone) decreases [open symbols in Fig. 2(b)], with
the corresponding spectral weight shifting to the main
bands. Along the nodal direction, Zω remains zero up to
optimal doping, and then shows a jump to a slowly in-
creasing value as the LMB crosses the Fermi level. These
results are in excellent agreement with experiment16.
A similar doping dependence of Zω is observed in

LSCO along the nodal direction, including the jump at
x = 0 and the spectral weight transfer from the shadow
band to the main band34 in Fig. 2(b). This is in qualita-
tive agreement with the calculation of PRT28 (triangles
in Fig. 2(b)), and with ARPES measurements on LSCO3

(open circles) above the optimal doping region. However,

in the very underdoped region, the ARPES data seem to
extrapolate smoothly to zero at half-filling (dashed line),
which may be related to nanoscale phase separations be-
lieved to be significant in LSCO.
Note that the analytic renormalization factor ZSDW

ω is
defined in the SDW phase, but is treated as a renormal-
ization of the paramagnetic phase dispersion. This subtle
point is an attempt to treat the pseudogap physics, and
is discussed in more detail in Section IV below.

B. FERMI VELOCITY AND DISPERSION
RENORMALIZATION

We turn next to the first order spectral momentM1(k).
One can measure the dispersion renormalization from the
size of the slope discontinuity, which can be written as
(Eq. C7)

∆ (dM1(k)/dk)kF
= ZωvF , (5)

where vF is the Fermi velocity28. Knowing Zω from
Figs. 2(b) and (c), we can extract vF as a function
of doping, as seen in Fig. 3(a). The results are ob-
tained for both LSCO and NCCO and compared with
ARPES data on LSCO3 and with PRT’s variational
cluster calculations28(hole doping) as well as with LDA
and mean-field theory for LSCO. Mean-field results for
NCCO have an equivalent doping dependence and thus
are not shown here. Notably, in spite of the substan-
tial decrease of Zω, the QP velocity vF does not dimin-
ish on entering into the pseudogap region. Although in
the SDW mean field case vF decreases smoothly with
underdoping as the gap grows, when a self-energy is in-
troduced, the reduction of the coherent spectral weight
(Zω) with underdoping compensates for this, leading to a
net enhancement of vF . The results are consistent with
PRT and ARPES. Similar results are also obtained in
a self-consistent Born approximation with antiferromag-
netic pseudogap in the t− J model41.
We define a dispersion renormalization factor in terms

of the conventional band velocity with respect to its bare
(LDA) counterpart (v0F ) as

Zd = vF /v
0
F , (6)

plotted in Figs. 3(a). In the paramagnetic case, disper-
sion renormalization is defined as

Z0
d = Z0

ωZ
0
kF

= Z0
ω

(

1 + ∂Σ′/v0F∂k
)

. (7)

This implies that in a conventional picture the devia-
tion in behavior of Z0

d from spectral weight renormal-
ization Z0

ω comes solely from the k−dependence of the
self-energy. Since this self energy is approximately k-
independent, one finds Z0

d ≈ Z0
ω. In sharp contrast, the

calculated Zd [Fig. 3(b)] shows a strikingly opposite dop-
ing dependence to Zω. This can be understood to be
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FIG. 2: (color online) (a) n(k) for NCCO and LSCO at several representative dopings with dashed lines showing the discontin-
uous jump at kF (highlighted in inset). Gold arrows mark features from the shadow bands which cross EF . (b) Zω at EF are
shown along the antinodal (red) and nodal (blue) direction for NCCO. Filled (open) symbols give the main (shadow) bands,
compared with their corresponding analytical approximation ZSDW

ω plotted by solid (dashed) line of same color. ARPES result
(green) is extracted from Ref. 16. (c) Same as (b) but for LSCO along the nodal direction. These results are compared with
PRT’s calculations for hole doping28 and ARPES results3 for LSCO along the nodal direction. All the experimental data and
PRT data in (b) and (c) are normalized to highlight their doping evolution. Brown dashed line shows that if there is nanoscale
phase separation in LSCO then Zω would scale linearly with doping in the extreme underdoped region.
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FIG. 3: (color online) (a) Fermi velocity vF along the antinodal direction in NCCO and nodal direction in LSCO is compared
with ARPES data on LSCO3,40 and with PRT’s calculation28. The blue dashed (solid) line gives the corresponding LDA (MFT)
results for LSCO. (b) Dispersion renormalization Zd for NCCO along antinodal direction, compared with an approximate
analytical formula for the dispersion renormalization ZSDW

d (solid line). (c) Same as (b) but for LSCO along the nodal
direction. The results are compared with experimental data1.

the result of an SDW gap, which introduces a new k-
dependence in the dispersion renormalization as given
by (Eq. C2):

ZSDW
d = Z0

ωZ
SDW
kF

= Z0
ω

(

1 +
∆2

ξkF
ξkF+Q

)

. (8)

Figs. 3(b) and (c) compare Zd and ZSDW
d for NCCO

and LSCO respectively. Thus the doping dependence of
Zd implies that as we go towards the Mott insulator, the
dispersion tends towards the LDA-bands, consistent with
LSCO results (blue open circles)1. The opposite doping
dependences of Zd and Zω can be readily understood by
comparing the corresponding analytical formulas ZSDW

d

(Eq. 8) and ZSDW
ω (Eq. 4). ZSDW

d (ZSDW
ω ) varies with

SDW gap as ∆ (1/∆), increasing (decreasing) with un-
derdoping. This in turn moves the in-gap states further
away from the Fermi level (hence decreasing Zω), and
thus shifting the band towards the LDA values (increas-
ing Zd)

42.

III. SPECIFIC HEAT

A striking application of the renormalization effects
can be seen in the doping evolution of the specific heat.
A general expression for the specific heat cV in the SDW
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FIG. 4: (color online) (a) Specific heat coefficient γ(x) for
different theoretical calculations (various lines), and the ex-
perimental results on NCCO (red squares)8 and PLCCO
(red circles)9. (b) Same as (a) but for LSCO (red squares3

and triangles7). Results are compared with ns [filled green
squares3 and open green squares40] and χ (blue)43), all nor-
malized at the VHS. The red dashed line shows that in un-
derdoped LSCO γ scales linearly with doping. Theoretical
γ has been scaled by a factor of 1.1, consistent with a weak
electron-phonon renormalization.

state including the self-energy correction is given in Ap-
pendix D. We find that the Sommerfeld coefficient γ can
be well described in terms of the density of state (DOS)
(N(0)) in the SDW state as44,

γ = cV (T )/T ≈
2π2k2B

3
N(0)/Z0

ω, (9)

where N0(0) is the mean-field DOS with SDW gap but
without self energy corrections.
Fig. 4 compares experimental values of γ as a function

of doping in LSCO3,7 and electron doped NCCO8 and
Pr1−xLaCexCuO4 (PLCCO)9 with several calculations
including bare LDA, MFT results with SDW gap, and
with self-energy correction for both NCCO and LSCO.
The striking differences between NCCO and LSCO away
from half-filling are due to the presence of the van-Hove
singularity (VHS) near EF in the latter case. N(0)
in LDA thus decreases (from a finite value at x = 0)
with increasing electron doping, whereas for LSCO N(0)
has a peak at the doping corresponding to the VHS
xV HS ∼ 0.201. SDW order opens a gap, reducing N(0),
and introduces steps associated with the collapse of the
SDW gap. Thus, for electron doping N(0) is nearly flat

for x < 0.11, reflecting the quasi-two dimensionality of
the electron pocket (constant DOS) in cuprates. The step
at x ∼ 0.11 signals the appearance of the hole pocket.
Similarly in LSCO the appearance of the electron pocket
near (π, 0) at x ≈ 0.17 within our model greatly enhances
the VHS features. Finally, adding self-energy corrections
(in the form of 1/Z0

ω) preserves the general shape of the
SDW γ, while shifting its magnitude back towards the
LDA values. It is interesting to relate the doping de-
pendence of γ(0) and Zω in Fig. 2(b). Note that Zω

is evaluated at a particular Fermi momentum whereas
γ(0) is computed after summing over Zω at all kF . As
Zω exhibits complimentary doping dependencies for main
and shadow bands, so the total remains fairly constant.
These results are in striking contrast to the strong cou-
pling limit where γ should diverge with the effective mass
as x → 0.45

The agreement with experiment is quite good in LSCO
for x ≥ 0.10, including the strong VHS feature. Inter-
estingly, the superfluid density ns and the paramagnetic
susceptibility data, which are proportional to the total
FS areas, show a similar doping dependence to γ. How-
ever, below x = 0.10 γ → 0 as x → 0, an effect not
captured by our calculations. Such an effect could be
due to a Coulomb gap7 and/or nanoscale phase separa-
tion. The linear dashed line in Fig. 3(b) illustrates the
corrected form expected in the latter case. Note that
nanoscale phase separation would produce the dashed
line seen in Fig. 2(c) as well as explain the anomalous
doping dependence of the chemical potential.46 Hence
the enhanced gossamer features seen in LSCO may be
related to nanoscale phase separation.

IV. DISCUSSION

The present calculations are most appropriate for elec-
tron doping, where only the (π, π) commensurate SDW
order is observed, and the model is in very good agree-
ment with experiment. Remarkably, the same model
when applied to hole-doped cuprates describes many as-
pects of the two-gap scenario23,47, despite the fact that
it does not capture the incommensurate magnetization.
The non-Fermi-liquid behavior presented here is not sen-
sitive to the specifics of the competing order, but only
to the resulting superlattice q-vector. We have ana-
lyzed other candidates for the competing order includ-
ing charge, flux, or d−density waves23, and find that the
results are insensitive to the nature of the competing or-
der state. Thus, Eqs. 4 and 8 continue to hold for any
Q = (π, π) order, as long as the appropriate gap ∆ is
used.
In the presence of long-range magnetic order, the

Green’s function develops a second pole, and should
properly be treated as a tensor. However, the pseudogap
phase is more likely to be associated with only short range
order, in which case the second pole does not cross the
real axis, the Green’s function can be treated as a scalar,
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and the information about incipient gap formation is en-

coded in the self-energy.48 The analytic approximations of
Eqs. 4 and 8 mimic this effect by treating the renormal-
ization factors as acting on the paramagnetic dispersion
ξk, with information on proximity to long-range magnetic
order encoded into ZSDW

ω and ZSDW
d .

This approach is similar to the phenomenological
model introduced by Yang et al.49 to describe RVB
physics. Indeed, their phenomenological self energy is
quite similar to the form expected for a NAFL, except for
the treatment of scattering at the magnetic zone bound-
ary, which splits the pockets expected for AF order into
two half-pockets. One puzzle is that the effect of strong
scattering at a superlattice zone boundary is already
well understood in standard Lifshitz-Kosevich theory50,
where it leads to a quantum switching between arcs of
Fermi surface. This produces harmonic mixing frequen-
cies in a quantum oscillation (QO) spectrum, and it is
hard to see how it could evolve into the short-circuiting
effect of Yang, et al. At any rate, the QOs observed in
NCCO are more consistent with the present model.19

V. CONCLUSION

In conclusion, we have shown that a number of salient
features of the non-Fermi-liquid state of the underdoped
cuprates can be understood within the framework of a
competing density wave order, which breaks the particle-
hole symmetry, and drives reconstruction of the FS. We
provide a transparent and analytic basis for describing
how the non-Fermi-liquid effects play out in renormal-
izing spectral weight via Zω and electronic dispersion
via Zd, and how they conspire to yield a specific heat
in the cuprates which is essentially conventional in na-
ture at all dopings. Our framework would provide a
straightforward basis for understanding how the broken-
symmetry order leads to ‘non-Fermi-liquid’ effects, not
only in the cuprates, but also in heavy-fermions51, Fe-
based superconductors52 and other strongly correlated
materials.
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Appendix A: Details of quasiparticle-GW (QP-GW)
Model

In the QP-GW formalism the bare dispersion is taken
as the LDA dispersion (ξk = ǫk − EF ), modeled via a
tight-binding (TB) fit53–57. We calculate the self-energy

0.0 0.1 0.2

1

2

x

U
 (

eV
)

(b)

MFT

U
ZU

0.0 0.1 0.2
0.6

0.7

x

(a)

Z

FIG. 5: (color online) (a) Average renormalization factor Z

decreases linearly with doping, very much like Z0
ω in Figs. 2(b)

and (c). (b) Our computed doping dependence of selfconsis-
tent values of U and ZU is compared with earlier mean field
results32,60.

FIG. 6: (color online) (a) Spectral intensity as a function of
ω along the high-symmetry lines for several dopings (at tem-
perature T = 0). Blue to red color map gives the minimum
to maximum intensity. The yellow dashed line gives the un-
derlying LDA dispersion where the gold lines represent the
renormalized magnetic bands (Σ0-dressed). (b) The QP-GW
DOS (blue lines) is compared with Σ0-dressed DOS (red line)
calculated at T = 0. The green lines show the DOS without
the vertex correction.

in a GW-like formalism using a simplified (one param-
eter) scheme where the input and final self-energies are
self-consistent in the coherent part only (QP-GWmodel).
In the following, we use a ‘tilde’ over a quantity to

symbolize that it is a 2 × 2 matrix. The self-energy in
the underdoped region is written in canonical form using
the Nambu formalism as

Σ̃t(k, σ, iωn) = Σ̃(k, σ, iωn) + φ(k, σ, iωn)τ̃1. (A1)

The dressed Green’s function is then

G̃−1(k, σ, iωn) = iωn1̃− H̃LDA − Σ̃t(k, σ, iωn) (A2)

where H̃LDA is the bare Hamiltonian defined in the
magnetic zone as diag[ξk, ξk+Q], and the τ̃i are Pauli
matrices. At each step, we adjust the chemical potential
EF to fix the doping. Real frequency Green’s functions
are extracted from the Matsubara results by analytic
continuation iωn → ω + iδ. Here, Σ̃(k, σ, iωn) is a
2 × 2 matrix in the SDW state58, whose diagonal part
renormalizes H̃LDA, while the off-diagonal term gives
a (small) anomalous frequency dependence to the gap
function φ(k, σ, iωn) = σ∆. ∆ = US is the magnetic
gap parameter and S is the magnetization at the
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commensurate vector Q = (π, π) for Hubbard U , which
is calculated using a mean-field approximation23. The
doping dependence of the on-site Hubbard U is obtained
due to charge screening from U = 〈V (q)/(1 + V (q)χ(q)〉,
where V (q) is the long-range Coulomb interaction59,
and χ(q) is the charge susceptibility in the φ−gapped
state defined below. The obtained values of screened U
are given in Ref. 26 and plotted in Fig. 5(b).

We calculate the self energy due to the spin as
well as the charge response within a GW framework as

Σ̃(k, σ, iωn) =
3

2
U2Z

′
∑

q,σ′

∫ ∞

−∞

dωp

2π

G̃(k+ q, σ′, iωn + ωp)Γ(k,q, iωn, ωp)Im[χ̃σσ′

RPA(q, ωp)],

(A3)

where the prime over the momentum summation indi-
cates that the summation is restricted within the mag-
netic Brillouin zone. The dressed susceptibility in the
above equation is given in terms of the 2 × 2 RPA sus-
ceptibility as,58

χ̃
σσ/σσ̄
RPA (q, iωn) =

χ̃
σσ/σσ̄
0 (q, iωn)

1̃± Uχ̃
σσ/σσ̄
0 (q, iωn)

. (A4)

Here the superscript (σσ) refers to the combined charge
plus longitudinal spin susceptibility tensor, whereas (σσ̄)
(with σ̄ = −σ) gives the transverse susceptibility tensor,

and the χ̃
σσ/σσ̄
0 (q, iωn) are bare susceptibilities.

A self-consistent ‘dressed’ GW calculation would
include Σ on the right-hand side of Eq. A3 in both
G and χ0. This generally leads to problems unless a
vertex correction Γ is included. Improved results are
often found by using a ‘bare’ G0 and χ0 – bare in the
sense of not including Σ. This latter G0W0−scheme
also fails in the present calculation by producing too
large a renormalization of the band dispersion. This is
because the imaginary part of the bare susceptibility
has the form χ′′

0 ∼ δ(ω − [ξk+q − ξk]), so that near
the Fermi surface, χ′′

0 should scale in frequency with
the dressed quasiparticle dispersion. Since G0W0 uses
the bare dispersions, peaks in χ′′

0 , which control the
renormalization, lie at too high an energy.

We therefore introduce a modified, or ‘quasiparticle’
(QP) GW approximation5 for the right-hand side (RHS)
of Eq. A3, as follows. In Eq. A3, we dress both G0 and
χ0 with an ‘input’ self-energy chosen as

Σ̃(iωn) = (1− 1/Z)iωn1̃. (A5)

Thus, the input Σ contains a single parameter Z, which
gives an overall renormalization of the ‘input’ dispersions
(RHS of Eq. A3). With this approximation, the bare

susceptibilities become

χ̃
σσ/σσ̄
0 (q, iωn) = −Z2

′
∑

k

∑

ν,ν′

S̃
σσ/σσ̄
ν,ν′

f(ZEν
k)− f(ZEν′

k+q)

iωn + ZEν
k − ZEν′

k+q

.

(A6)

The prime over the summation has the same meaning as
in Eq. A3. In Eq. A6, the ν summation is over the two
magnetic bands UMB (ν = +) and LMB (ν = −):

E±

k = (ξ+k ± E0k) (A7)

with ξ±k = (ξk ± ξk+Q)/2 and E0k =
√

(ξ−k )2 +∆2

(Ref. 42), f(E) = 1/(1 + exp (E/kBT )) is the Fermi
function at temperature T , and kB is the Boltzmann con-

stant. The coherence factors S̃
σσ/σσ̄
ν,ν′ give the amplitude

of the scattering of the quasiparticles with the charge
and magnon modes of the system respectively with com-
ponents

S̃
σσ/σσ̄
ν,ν′ (11) = (αkαk+q ± νν′βkβk+q)

2,

S̃
σσ/σσ̄
ν,ν′ (12) = −ν(αkβk ± νν′αk+qβk+q). (A8)

Here

αk(βk) =

√

1

2

(

1±
ξ−k
E0k

)

(A9)

respectively are the weights associated with the U/LMBs.
The other coherence factors in Eq. A8 can be derived
using the translational symmetry with respect to q.
A limitation of the present scheme is also apparent

from Eq. A3. This self-energy is a good approximation
for the coherent, dressed bands, but does not extend to
the incoherent part of the spectrum, thereby underesti-
mating the incoherent spectral weight. We have empir-
ically found that this can be partly remedied by incor-
porating a vertex function Γ. Consistent with the QP
approximation, the vertex correction to the self-energy is
obtained through Ward’s identity as

Γ(k,q, iωn, ωp) = 1− (∂Σ′/∂ω)ω=ω0
= 1/Z.(A10)

Even though we have chosen perhaps the simplest form of
the vertex correction, it has a large impact on the spectral
weight transfer. Γ = 1/Z eventually reduces the renor-
malization of the bare susceptibility in Eq. A3 and hence
the spectral weight is spread out more towards higher
energies, enhancing the incoherent spectral weight. An
illustration of the importance of this vertex correction is
given in Fig. 6(b).
Next we discuss our self-consistent scheme, and ex-

plain how the parameter Z is chosen. We choose Z to
match the average renormalization in the low-energy (co-
herent) part of the spectrum. Specifically, if Σ′ is the
real part of the diagonal self energy, then we adjust Z
self-consistently until it satisfies Z = (1− ∂Σ′/∂ω)−1

ω=ωo
,
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FIG. 7: (color online) Real and imaginary part of the self-
energy as expanded in the tight-binding form of Eq. A11.

where ωo is an average quasiparticle excitation energy,
which is related to the poles in G. This gives a good self-
consistent result for the coherent spectral weight in the
low-energy region (see Fig. 6(a)), whereas the incoherent
parts in the higher energy regions are not self-consistent.
Thus our scheme is in the spirit of Landau’s quasiparti-
cles, except that Landau assumed that all of the spectral
weight goes into the QP band, while we have only a frac-
tion Z.
When this is done, we find that U is effectively further

renormalized by the doping dependent Z [Fig. 5(a)], so
that the product Uχ0 is approximately independent of Z.
The resulting ZU closely resembles our earlier mean-field
calculations as shown in Fig. 5(b).
Lastly, we find that the momentum dependence of the

fluctuation self-energy Σ is relatively weak5,6. To empha-
size this point, we expanded the momentum dependence
of the self energy in a form similar to the tight-binding
model:

Σ(ω,k) = Σ0(ω) + Σ1(ω) (cx + cy)

+Σ2(ω)cxcy +Σ3(ω) (c2x + c2y) ,(A11)

where cα(x/y) = cos (αk(x/y)a). We calculate the
self-energy at four high symmetry points k =
(0, 0), (π, 0), (π, π) and (π/2, π/2) to obtain the above
coefficients as shown in Fig. 7. Clearly, only the
k−independent part (red line) has a strong contribution.
Therefore, we have simplified the self-energy calculation
by approximating it with a k-independent average value
taken as the value at k = (π/2, π/2). Since we are ne-
glecting the k−dependence of the self energy, Σ11 = Σ22

and Σ12 = Σ21.
Figure 8(a) shows that in the QP-GW scheme the spec-

tral weight splits up into four band-like features. The two
bands closer to the Fermi level are the UMB and LMB,
associated with the development of the spin-density wave
(SDW). The residual incoherent spectral dispersions at
higher energies are the UHB and LHB. Similar four band
features are found in the variational cluster calculations
shown in Fig. 8(b)27. The corresponding density of states
(DOS) shows four peaks associated with these four bands,
Figs. 8(c)-(f). These four band features separated by
SDW gap or ‘waterfall’ effects show semi-quantitative
agreement with QMC results6,61. With doping, the two
magnetic bands merge in a QCP near optimal doping,

FIG. 8: (color online) (a) The spectral intensity of NCCO at
x = 0, plotted (in logarithmic scale) along the high-symmetry
lines, is compared with variational calculations27 in (b). (c)-
(f) The computed DOS at various dopings are compared
with the corresponding QMC results (blue lines) for x = 0.0
[Ref. 61] and for x = 0.05 to x = 0.20 [Ref. 6].

while the two Hubbard bands occur at the top and bot-
tom of the LDA bands, and hence the associated Hub-
bard band splitting is comparable to the LDA bandwidth
at all dopings.

Appendix B: Summary of renormalization factors

We summarize the various renormalization factors that
arise in this study for convenience reference. Equation
numbers in square brackets indicate where a specific fac-
tor is discussed in the text.

Zω = ∆n(kF ) [Eq. 2]

= Total spectral weight renormalization.

Z0
ω = (1− ∂Σ′/∂ω)

−1
ω=0 [Eq. 3]

= Self energy contribution to spectral weight

renormalization.
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ZSDW
ω =

Z0
ω

2



1±

(

1 +

(

2∆

ξkF
− ξkF+Q

)2
)−1/2





[Eq. 4]

= Analytical formula for SDW spectral weight

renormalization.

Zd = vF /v
0
F [Eq. 6]

= Velocity renormalization.

Z0
d = Z0

ωZ
0
k = Z0

ω

(

1 + ∂Σ′/v0F∂k
)

[Eq. 7]

= Conventional dispersion renormalization.

ZSDW
d = Z0

ω

(

1 + ∆2/ξkF
ξkF+Q

)

[Eq. 8]

= Analytical formula for SDW dispersion

renormalization.

γ = cV /T [Eq. 9]

= Specific heat coefficient.

Appendix C: Analytical form of various
renormalization factors

Near the Fermi level, the dressed Green’s functions
from Eq. A2 can be approximated as,

G11(k, ω) = Z0
ω

ω − ξ̄k+Q

(ω − ξ̄k)(ω − ξ̄k+Q) + (∆)2

=
Z0
ω

ω − ZSDW
d (k)ξk

(C1)

where ξ̄k = Z0
ωξk, ∆ = Z0

ω∆, and ξk is the bare (LDA)
dispersion calculated at the same doping. In Eq. C1,
Z0
ω = (1−∂Σ′

11(ω)/∂ω)
−1 (Eq. 3) is the part of the spec-

tral weight renormalization due to the self-energy, where
we have neglected the contribution of Σ12. Even though
we assume a k−independent self-energy and thus Z0

k = 1
from Eq. C1, the SDW gap introduces a k−dependent
dispersion renormalization (defined here at ω = 0) given
by

ZSDW
d (k) = Z0

ω

(

1 +
∆2

ξkξk+Q

)

. (C2)

Note that ξk, ξk+Q, and ∆ are all bare values in Eq. C2
as the same renormalization factor Z0

ω gets cancelled out
in the last term. Furthermore, we can split the spectral
function A(k, ω) = ImG(k, ω)/π into a coherent part (at
Fermi level) and an incoherent part where the former can
be represented by a delta function as

A11(k, ω) = Z0
ω

(

α2
kδ(ω − Ē+

k ) + β2
kδ(ω − Ē−

k )
)

ω=0

+ Aincoh(k, ω > 0) (C3)

where Ē±

k = Z0
ωE

±

k ). Therefore, the coherent part is
governed by the SDW coherence factors αk and βk for
the filled state with a renormalization by Z0

ω. The zeroth
and first order moment of the spectral weight (Eq. 1)
then can be approximated respectively as28,

n(k) =

∫ 0

−∞

A11(k, ω)dω

≈ Z0
ω

[

α2
kθ(−Ē+

k ) + β2
kθ(−Ē−

k )
]

(C4)

M1(k) =

∫ 0

−∞

A11(k, ω)ωdω

≈ Z0
ω(k− kF )

[

α2
kv

+
F θ(−Ē+

k ) + β2
kv

−

F θ(−Ē−

k )
]

.

(C5)

In the second equation above, we have expanded the
renormalized band near the Fermi level as Ē±

k ≈ v±F (k−
kF ), where vF is the corresponding Fermi velocity. The
singularity in n(k) becomes

Zω = ∆n(kF ) = Z0
ωα

2
kF

≡ Z+
ω for UMB

= Z0
ωβ

2
kF

≡ Z−

ω for LMB. (C6)

Note that in the present case, the weight for UMB (LMB)
appears along the antinodal (nodal) direction when the
band crosses the Fermi level. Inserting the form of α, β
from Eq. A9, we get Eq. 4. Similarly, inserting this Zω

in Eq. C5, we can measure the singular jump in M1(k)
as

∆ (dM1(k)/dk) = Z±

ω v±F . (C7)

Thus Zω and vF acquire a k-dependence through the
SDW coherence factor.

Appendix D: Specific Heat Calculation

Following the derivation by Abrikosov et. al.44, we
calculate the entropy in the SDW state for a strongly
correlated system at finite temperature (in the low tem-
perature limit) as

S(T ) = −
2βk2B
2πi

∫ ∞

−∞

dωω

(

−
∂f(ω)

∂ω

)

×
∑

k,σ

Tr
[

ln G̃−1
R (k, σ, ω) − ln G̃−1

A (k, σ, ω)
]

.

(D1)

Here the 2 × 2 retarded and advanced (dressed) Green’s
functions GR/GA depend on the temperature through
the SDW order parameter only, which has a very weak de-
pendence in the low temperature region. We can rewrite
Eq. D1 in terms of a dimensionless parameter y = βω fol-
lowing Ref. 62, and then taking the temperature deriva-
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tive we get the expression for the specific heat as

cV (T ) = −
kBβ

2

4π

∫ ∞

−∞

dyy2 sech2(y/2)

×
∑

k,σ

Tr

[

Im

(

G̃R(k, σ, ω)
∂

∂ω
G̃−1

R (k, σ, ω)

)]

ω=y/β

.

(D2)

cV (T ) behaves linearly with T in the low temperature
region, while the slope (γ) undergoes an abrupt change
with a kink in the waterfall region. Since the high energy
kink energies for cuprates are around 0.3 to 0.6 eV, the
kink should appear in cV only at a very high temperature,
Tk ∼ 103K. Thus, in our calculation of γ (Fig. 5), we
have used the full expression for cV above but evaluated
it in the ω = 0 limit.
In the T = 0 (ω → 0) limit, Eq. D2 can be simplified

as sech(y) = δ(y − βω). In this limit, the imaginary
part of the self-energy is zero and thus the last quantity
in Eq. D2 is calculated by noting that the ω−derivative
of the real part of the self-energy is: diagonal term =
1 − 1/Z0

ω, and off-diagonal term =(∂Σ′
12/∂ω)ω=0. This

simplifies Eq. D2 as

cV ≈
2

3
π2k2BT

∑

k

[

1

Z0
ω

(A11(k, 0) +A22(k, 0))

+
∂Σ12

∂ω
(A12(k, 0) +A21(k, 0))

]

, (D3)

where A11 is given in Eq. C3 and A22 = A11(k → k+Q),
i.e., A22 is similar to A11, only the weights (α2

k, β
2
k) are

interchanged. We have used Eq. D3 in the calculation
of Fig. 5. The constraint α2

k + β2
k = 1 removes these

SDW coherence factors from the equation. Neglecting
the off-diagonal term proportional to the small quantity
∂Σ12/∂ω, the specific heat expression becomes

cV ≈
2

3
π2k2BT

∑

k

[

δ(−Z0
ωE

+
k ) + δ(−Z0

ωE
−

k )
]

+ ...

≈
2

3
π2k2BT

[

N+(0) +N−(0)
]

/Z0
ω. (D4)

Here, N±(0) =
∑

k δ(−E±

k ) is the total density of states
for the (U/L)MBs at the Fermi level in the SDW state,
but without renormalization (mean-field theory). For
both NCCO and LSCO, Eq. D4 is an excellent approxi-
mation to the exact expression of Eq. D3. It is interesting
to observe that in the final expression for cV (Eq. D4),
the self energy correction enters only through the renor-
malized DOS. Thus, in the QP-GW model, cV has the
same form as in conventional Fermi-liquid theory.
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and Michael Ma, Phys. Rev. Lett. 102, 206407 (2009) .
13 S. Sakai, Yukitoshi Motome, and Masatoshi Imada, Phys.

Rev. Lett. 102 056404 (2009).
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15 M. Ĉubrović, Jan Zaanen, and Koenraad Schalm, Science
325 439 (2009); S.-S. Lee, Phys. Rev. D. 79, 086006 (2009).

16 N.P. Armitage, F. Ronning, D. H. Lu, C. Kim, A. Damas-
celli, K. M. Shen, D. L. Feng, H. Eisaki, Z.-X. Shen, P. K.
Mang, N. Kaneko, M. Greven, Y. Onose, Y. Taguchi, and
Y. Tokura Phys. Rev. Lett. 88, 257001 (2002).

17 N. P. Ong, Z. Z. Wang, and J. Clayhold, J. M. Tarascon, L.
H. Greene, and W. R. McKinnon, Phys. Rev. B 35, 8807
(1987).

18 N. Doiron-Leyraud C. Proust, D. LeBoeuf, J. Levallois,
J.-B. Bonnemaison, D. A. Bonn, W. N. Hardy, and L.
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