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Abstract

The cross section for a gravitational wave antenna to absorb a gravi-

ton may be directly expressed in terms of the non-local viscous response

function of the metallic crystal. Crystal viscosity is dominated by elec-

tronic processes which then also dominate the graviton absorption rate.

To compute this rate from a microscopic Hamiltonian, one must include

the full Coulomb interaction in the Maxwell electric field pressure and

also allow for strongly non-adiabatic transitions in the electronic kinetic

pressure. The view that the electrons and phonons constitute ideal gases

with a weak electron phonon interaction is not sufficiently accurate for es-

timating the full strength of the electronic interaction with a gravitational

wave.

1 Introduction

Resonant acoustic modes in massive metallic bars have long been used as a
probe for detecting possible gravitational wave sources. The interaction of grav-
itational waves with such antennae was thought by many to be dominated by
the heavy nuclear masses within the metal. The interaction with the lighter
electron masses was considered to be negligible. This view is valid only for
static Newtonian gravity, which couples to the mass density ρ. We have re-
cently shown[1] that gravitational waves couple into the pressure tensor P, and
the pressure is dominated by electronic motions. Thus, the electronic coupling
to the gravitational wave cannot be ignored.

The condensed matter Hamiltonian required to understand the coupling of
the electrons to the gravitational wave is the sum of kinetic energies of the elec-
trons and the nuclei plus the Coulomb interactions between all of the charged
particles. Some standard models of the solid state which employ free electron
and free phonon gases together with a weak electron-phonon interaction are
inadequate[2] for the description of electron-graviton interactions since terms
leading to highly excited virtual electronic states have been incorrectly thrown
away. For example, the electron-electron Coulomb interactions[3] are not con-
sidered in the usual electron-phonon interaction model. Model Hamiltonians
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are considered in Sec.2. From the Hamiltonian one can compute the pressure
tensor which determines the interaction between the gravity wave and the an-
tenna. The exact result is then the kinetic pressure plus the Maxwell field
pressure. The Coulomb terms in the Maxwell stress tensor are crucially im-
portant for understanding the mutual interactions between electrons, phonons
and gravitons as discussed in Sec.3. In Sec.(4) the rigorous expression for the
single graviton absorption cross section is exhibited and shown to be expressed
directly and rigorously in terms of the non-local viscosity of the crystal. Since
the electrons dominate the viscosity, they also dominate the absorption cross
section.

2 Condensed Matter

The metal bar may be described by a Hamiltonian H which consists of the
kinetic energy Kn of the nuclei and the kinetic energy Kel of the electrons all
interacting with the Coulomb law U ,

H = K + U ,

K = Kel + Kn = −
∑

j

(

h̄2

2m

)

∇2
j −

∑

a

(

h̄2

2Ma

)

∇2
a,

U = e2







∑

i<j

1

rij
+

∑

a<b

ZaZb

Rab

−
∑

i,a

Za

|ri − Ra|







. (1)

The pressure implied by Eq.(1) is dominated by the electronic motions rather
than the nuclear motions so that the electronic coupling to the gravitational
wave becomes crucial for determining the detection efficiency. We have found
that the efficiency induced by including the electronic coupling to gravity is
considerably enhanced above the efficiency found by including only the nuclear
coupling to gravity.

The considerations above have been recently criticized[2]. The microscopic
Hamiltonian employed[2] for the crystal is a standard electron-phonon approximation[4]
to our Hamiltonian Eq.(1) given (in first quantized notation) as

Heff = Kel + Hph + Hel−ph,

Kel = −

(

h̄2

2m

)

∑

j

∇2
j ,

Hph = −
h̄2

2

∑

k

(

∂

∂Qk

)2

+
1

2

∑

k

ω2
kQ

2
k,

Hel−ph =
∑

j

Φ(rj) where Φ(r) =
∑

k

Qkφk(r), (2)
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or in second quantized notation

Heff =

∫

ψ†(r)

{

−
h̄2

2m
∇2 + Φ(r)

}

ψ(r)d3r +
∑

k

(

b†kbk +
1

2

)

h̄ωk. (3)

Starting from the exact Coulomb Hamiltonian H one may derive the low en-
ergy effective Hamiltonian Heff only by employing a sequence of approximations[5]:
(i) The electron-electron Coulomb interactions are ignored. (ii) Phonon modes
are derived in the adiabatic approximation. (iii) The non-adiabatic excitation
interaction matrix Hamiltonian is replaced by a local electron deformation po-
tential Φ(r). These three approximations make the effective Hamiltonian in-
adequate for discussing the gravitational wave interaction. In our work[1] we
avoided these three approximations by employing rigorously exact sum rules.
Any other work[2] which starts from the antenna Hamiltonian Heff is bound to
miss the electronic-gravitational enhanced efficiency because of an inadequate
approximation in the Hamiltonian from which the computation begins.

3 Pressure and Gravitational Interactions

For a small gravitational wave strain u(r, t) described by the space-time metric

c2dτ2 = c2dt2 − |dr|2 − 2dr · u(r, t) · dr, (4)

the interaction between the gravitational wave and condensed matter is de-
scribed by

Hint = −

∫

(P : u)d3r, (5)

wherein P is the pressure tensor of the condensed matter. For the exact Coulomb
Hamiltonian the pressure tensor is given by the sum of the kinetic pressure and
the Maxwell field pressure[7]

P(r) = PK(r) + PMaxwell(r). (6)

The electron and nuclear momenta will be denoted, respectively by pi = −ih̄∇i

and Pa = −ih̄∇a. Spatial indices will be denoted by µ and ν which may be
x, y or z. The kinetic pressure tensor

PK(r) = PKel
(r) + PKn

(r),

PKel
(r)µν =

1

4m

∑

j

(pjµpjνδ(r − rj) + pjµδ(r − rj)pjν)

+
1

4m

∑

j

(pjνδ(r − rj)pjµ + δ(r − rj)pjµpjν) ,

PKn
(r)µν =

∑

a

1

4Ma

(PaµPaνδ(r − Ra) + Paµδ(r − Ra)Paν)

+
∑

a

1

4Ma

(Paνδ(r − Ra)Paµ + δ(r − Ra)PaµPaν) , (7)
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and the Maxwell field pressure

PMaxwell(r) =
1

8π

∑

(i,j 6=)

[Ei(r) ·Ej(r)1 − 2Ei(r)Ej(r)]

+
1

8π

∑

(a,b6=)

[Ea(r) · Eb(r)1 − 2Ea(r)Eb(r)]

+
1

8π

∑

(a,i)

[Ea(r) · Ei(r)1 − Ea(r)Ei(r) − Ei(r)Ea(r)] , (8)

wherein the electric fields due to an electron or a nucleus are given, respectively,
by

Ei(r) = −
e(r− ri)

|r− ri|3
,

Ea(r) =
eZa(r − Ra)

|r − Ra|3
. (9)

Employing the approximate Hamiltonian in Eq.(2), Branchina et. al.[2] im-
ply a pressure (via the linear Hamiltonian coupling in hµν = 2uµν) which is
much simpler than the rigorous Eqs.(6), (7) and (8) of our work; i.e.

Peff (r) ≈ PKel
(r) + Pion(r). (10)

The simplicity of the above approximate Peff (r) compared with the exact P(r)
arises because so very many of the terms in the Maxwell pressure tensor Eq.(8)
have been simply thrown away. For example, all Coulomb electric field interac-
tions between electrons have been ignored.

To see what is involved, consider a process in which a graviton g with energy
h̄ωg is absorbed by an antenna producing a phonon φ with energy ǫφ; i.e.

g + I → F where h̄ωg = ǫφ (11)

With the exact Coulomb Pressure of Eqs.(6)-(8), but not with the approxi-
mate pressure of Eq.(10), an electronic process can occur with an intermediate
electron-hole pair state N

g + I → N → F (12)

as shown in Fig.(1).
For example, with the help of the full Maxwell stress tensor one computes the

pressure matrix elements including highly excited virtual non-adiabatic excited
states,

〈F |P |I〉 =
1

8π

∑

N

{〈F |E |N〉 · 〈N |E |I〉1− 2 〈F |E |N〉 〈N |E |I〉} + . . . , (13)

in which the electron pressure PKel
included in (. . .) also has a similar structure

for the intermediate states.
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Figure 1: An incident graviton of energy h̄ωg excites the antenna from an initial
state I to a final state F containing a phonon with energy εφ. The reaction
requires the virtual electron-hole pair N present only if the full pressure P is
used to compute the matrix element 〈F |Hint |g, I〉 = −

∫

〈F |P |I〉 : ugd
3r for

the process.

4 Viscosity

In an infinite medium, the linear approximation to the Einstein field equation
is

{

1

c2

(

∂

∂t

)2

−∇2

}

u =

(

8πG

c4

)

p. (14)

The transverse traceless part p of the pressure P is related to the strain u by
the constitutive relation

p = −2

(

µu + η
∂u

∂t

)

, (15)

wherein µ is a Lamé elastic constant and η is the crystal viscosity. The gravi-
tational wave then travels through the elastic media as described by the wave
equation

{

1

c2

(

∂

∂t

)2

+
16πGη

c4

(

∂

∂t

)

+
16πGµ

c4
− ∆

}

u = 0. (16)

The energy in the wave attenuates at rate Γ (per unit time) as determined by
Eq.(16). The absorption rate Γ is completely determined by the viscosity η via

Γ =

(

16πG

c2

)

η (17)

as has been proved in previous work[6].
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For a finite size medium, such as a gravitational wave antenna, the rigorously
exact result for a graviton to be absorbed at temperature T is determined by the
non-local viscosity. With β = (h̄/kBT ), the microscopic Green-Kubo formula
for viscosity is

ηijkl(r, r
′, ζ) =

∫ ∞

0

eiζt

{

1

h̄

∫ β

0

〈pkl(r
′,−iλ)pij(r, t)〉 dλ

}

dt. (18)

Theorem: The (LSZ reduction) formula for the total cross section for a graviton
with polarization e at frequency ω = c|k| to be absorbed by an antenna of volume
Ω is given by

σ(ω) =
16πG

c3
ℜe

∫

Ω

∫

Ω

eik·(r′−r){e∗ijηijkl(r, r
′, ω + i0+)ekl}d

3rd3r′. (19)

There can be no difference of opinion as to whether the quantum pressure
fluctuations producing the viscosity in Eq.(18) determines the total graviton
cross section as in Eq.(19). That the electrons dominate the viscosity η in
low temperature metals has been experimentally well established[8]. Since the
cross section for the absorption of gravity waves is rigorously determined by the
viscosity response function, it is then evident that electrons dominate over the
nuclear motions with regard to gravity wave absorption.

5 Conclusion

The gravitational wave is absorbed by an antenna via the quantum fluctuations
in the pressure, which describe the viscous response function. In a metallic
antenna, the electronic motions control the pressure and thereby control the
viscosity. The electronic nature of viscous electronic damping of sound has
been experimentally verified. Since viscosity also damps gravitational waves,
it seem natural that electronic motions should play a key role for gravitational
wave detection.

To understand the importance of electronic-gravitational wave interactions
from a microscopic viewpoint, one must keep the correct virial theorem pres-
sure contributions for both the Coulomb energy and kinetic energy. These con-
tributions have been correctly computed in previously discussed viscosity sum
rules[1]. The sum rules dictate that the full inclusion of the Coulomb interactions
be present in an adequate microscopic theory. An inadequate model of pressure
matrix elements consists of electrons and phonons as two ideal gas components
weakly interacting with one another. In such weakly coupled electron-phonon
models, the electronic Coulomb interactions are ignored, removing the strongly
non-adiabatic matrix elements required for proper strength of electron-hole vir-
tual excitations.

Finally, if the Coulomb interactions are properly included, then the electronic
enhancement of the gravitational wave detection efficiency is theoretically sub-
stantial.
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