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Reverse engineering of linking preferences from network restructuring
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We provide a method to deduce the preferences governing the restructuring dynamics of a network from the
observed rewiring of the edges. Our approach is applicable for systems in which the preferences can be
formulated in terms of a single-vertex energy function withfskd being the contribution of a node of degreek
to the total energy, and the dynamics obeys the detailed balance. The method is first tested by Monte Carlo
simulations of restructuring graphs with known energies; then it is used to study variations of real network
systems ranging from the coauthorship network of scientific publications to the asset graphs of the New York
Stock Exchange. The empirical energies obtained from the restructuring can be described by a universal
function fskd,−k ln k, which is consistent with and justifies the validity of the preferential attachment rule
proposed for growing networks.

DOI: 10.1103/PhysRevE.70.046115 PACS number(s): 89.75.Hc, 02.70.Rr, 05.70.2a, 05.90.1m

I. INTRODUCTION

In the past few years, the analysis of the network structure
of complex systems has become a rapidly expanding inter-
disciplinary field [1–3]. Interpreting the dynamics of these
complex networks with techniques developed in statistical
mechanics represents a new approach to network theory
[4–11]. A recently introduced method is to define equilib-
rium network ensembles as stationary ensembles of graphs
generated by restructuring processes obeying detailed bal-
ance and ergodicity[11]. During such a restructuring pro-
cess, edges are removed and/or inserted. If anenergy func-
tion of the graphs is also given, then the construction of the
corresponding microcanonical, canonical, and grand canoni-
cal ensembles can be carried out in a similar way as in clas-
sical statistical physics. However, unlike in many physical
systems, the energy of a graph cannot be derived from first
principles and does not necessarily exist. In the case of graph
ensembles designed to have some prescribed property, a
properly defined cost function(or energy) can capture the
deviations from this property. This method of defining en-
ergy is typically used in optimization contexts.

For network systems, in which the restructuring is as-
sumed to be governed by interactions that can be interpreted
in terms of energy, one can try to deduce this energy using
the data obtained from the time series of the evolution of the
system. In the present work, our goal is to demonstrate this
reverse engineeringprocess in detail. In particular, we shall
put our methods into practice for a few different network
systems such as the coauthorship networks of scientific pub-
lications [12–17], the network of U.S. film actors[18,19],
and the asset graphs of the New York Stock Exchange[20].

II. RESTRUCTURING PROCESSES
AND PREFERENCES

In the following we assume that the preference for estab-
lishing a given link can be expressed in terms of a change in

the network’s total energy. During this graph restructuring
process, the edges(which can be deleted, relocated, or newly
inserted) can be thought of as particles in a physical system
and the vertices as the volume of the system. Since the prop-
erties of growing networks have already been studied in
great detail, here we assume that the number of vertices,N,
is fixed.

In the statistical mechanics picture, the time evolution of
the probability of occurrence of the graphs is governed by a
set of master equations[11]:

]Pa

]t
= o

b

sPbrb→a − Para→bd, s1d

wherePa is the probability of grapha and ra→b denotes the
transition rate from grapha to graphb. If the dynamics is
governed by an energy function, then it determines the ratio
of the transition rates as

ra→b

rb→a
= e−sDEab−mDMabd/T. s2d

In the equation aboveDEab=Eb−Ea is the energy difference
between the graphs,Mab=Mb−Ma denotes the difference in
the total number of edges,m is the chemical potential asso-
ciated with the appearance of extra edges in the system, and
T denotes the temperature, corresponding to the level of
noise. If M is kept constant, then in theT→` limit the
dynamics converges to a totally random rewiring process,
and thus the ensemble of classical random graphs is recov-
ered[21]. On the other hand, at low temperatures the graphs
with lowest energy(meeting the requirements set up by the
preferences) are selected with enhanced probability.

As the transition rates obey detailed balance if the dynam-
ics is ergodic, the probability distribution will converge to a
stationary distribution.

PHYSICAL REVIEW E 70, 046115(2004)

1539-3755/2004/70(4)/046115(7)/$22.50 ©2004 The American Physical Society70 046115-1



III. SINGLE-VERTEX ENERGIES

The energy function of a network corresponds to the pref-
erences in the rearranging of the graph structure(e.g., when
relocating an edge from one vertex to another). If only the
local properties of the graph influence the edge relocation,
then the simplest form of the energy is given by the sum of
contributions from the individual vertices. Assuming that
these contributions depend only on the degrees of the verti-
ces, the total energy can be written as

E = o
i=1

N

fskid, s3d

whereN is the total number of vertices, andki denotes the
degree of vertexi. Note that if fskd is shifted by a constant,
the resulting dynamics remains unchanged since only the
difference between energiesassociated with different degrees
may influence the restructuring. Therefore, without loss of
generality we may setfs0d=0. Furthermore, the linear part of
f is irrelevant if the number of edges is constant(since its
contribution is proportional to the number of edges in the
graph), and simply renormalizes the chemical potential if the
number of edges is allowed to change.

An alternative form of the single-vertex energy functions
can be written as

E = o
i=1

N

o
i8

gski8d, s4d

wherei8 runs over all vertices that are neighbors of vertexi.
In this interpretation, the energy of an individual vertex de-
pends on the connectivities of its neighbors, and vertexi
collects an energygski8d from each of its neighbors. These
neighbors in turn will all collectgskid from vertex i; there-
fore, the total contribution to the energy from vertexi is
kigskid. Thus, by choosing

fskd = kgskd, s5d

the two alternative forms of the single-vertex energy, Eqs.
(3) and (4), become equivalent.

The advantage of the latter representation is that the irrel-
evant linear part offskd appears as a simple additional con-
stant term ingskd for kù1.

IV. REVERSE ENGINEERING WITH INDEPENDENT
EDGE DYNAMICS: THE METHOD

In the following we assume that the energy function of the
investigated system falls into the class of the single-vertex
energy functions(4). The main point of our method is that it
assumesindependent dynamics for each half edge. In this
approach, each vertexi is treated as a hedgehog, withki half
edges. Since the energy function depends only on the degree
sequence, the energy of the network is identical to that of the
set of isolated hedgehogs. The restructuring of the network
can be approximated by the insertion and deletion of half
edges. This approximation is valid when the number of ver-
tices is large compared to the typical number of half edges

on the individual vertices. Let us denote byrk→k−1 the rate at
which existing half edges on vertices with degreek disap-
pear, and accordingly byrk−1→k the rate at which new half
edges appear on vertices with degreek−1. The ratio of these
two rates is determined by the energy in a way similar to Eq.
(2):

rk→k−1

rk−1→k
=

effskd−m̃kg/T

effsk−1d−m̃sk−1dg/T , s6d

where m̃=m /2 denotes the chemical potential for the half
edges. From Eq.(6) it is clear that the effect of the chemical
potential on the dynamics cannot be separated from the ef-
fect of the linear part offskd, and the multiplication offskd
andm by the same number is equivalent to the rescaling of
the temperature. For these reasons it is convenient to intro-
duce the dimensionless single-vertex energy

fskd =
fskd − m̃k

T
, s7d

which incorporates the chemical potential as well. This
yields

rk→k−1

rk−1→k
= efskd−fsk−1d. s8d

The number of disappearing edges on vertices with degree
k per unit time can be written as

Ik→k−1 = rk→k−1pkNk, s9d

because there arepkN vertices withk edges and these have a
total of pkNk edges on them. Similarly, the current between
the same two states in the opposite direction is

Ik−1→k = rk−1→kpk−1NsN − 1d, s10d

because there arepk−1N vertices with k−1 edges and the
appearing new half edge can be placed atN−1 different
positions(corresponding to theN−1 possible neighbors of a
given vertex). For simple graphs(i.e., when only zero or one
connection is allowed between two vertices) the number of
these possible positions isN−1−sk−1d and accordingly the
sN−1d factor in expression(10) should be replaced bysN
−kd. However, in all cases studied in this paper we haveN
@k, and therefore we may use

Ik−1→k = rk−1→kpk−1N
2 s11d

in all situations. From the ratio of the currents(11) and (9)
and Eq.(8) we get

efskd−fsk−1d =
Ik→k−1

Ik−1→k

pk−1

pk

N

k
. s12d

The quantities appearing on the right hand side can be ob-
tained from the available data and the currents can be com-
puted as follows. At each time step each vertex should be
compared to its own state in the next time step. Those links
that appear only in the latter graph contribute a current of
amount 1 toIk→k+1, wherek is the degree of the vertex in the
former state, whereas those links that are deleted in the time
step contribute toIk→k−1. If a new vertex appears in the sec-
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ond graph, each of its links will contribute toI0→1 with a
current of amount 1. Similarly, links of disappearing vertices
of degreek will contribute toIk→k−1. A simple example dem-
onstrating the evaluation of the currents in the frame of in-
dependent edge dynamics is shown in Fig. 1.

Since we setfs0d=0, the correspondingfskd will also be
zero for k=0. For kù1, we can expressfskd using the re-
cursion relation(12) as

fskd = o
l=1

k

lnF I l→l−1

I l−1→l

pl−1

pl

N

l
G . s13d

In the alternative representation of the energy defined in Eqs.
(4) and (5), one can introduce

gskd =
fskd

k
=

gskd − m̃

T
. s14d

V. CASE STUDIES

We first tested our method on known energy functions
used in Monte Carlo simulations, and then applied it to study
real world systems ranging from the coauthorship networks
of scientific publications to the asset graphs of the New York
Stock Exchange. In each case, the statistics of vertices with a
given degree became poor with increasingk; therefore only
the interval of the well represented degrees was taken into
account in our reverse engineering process. The upper
boundary of this interval,kmax, was set to the point where the
time average of the number of vertices with degreek became
smaller than 0.1% of the average number of vertices.

As explained in the previous sections, when the total
number of edges,M, is fixed, the linear part offskd is irrel-
evant. WhenM is allowed to vary, a linear function −m̃k
naturally appears in Eq.(2), and cannot be uniquely sepa-
rated from the energy. Therefore, we will focus on the non-
linear part of the empirically obtainedfskd, corresponding to
the nonlinear part of the single-vertex energy. In general, the
fskd obtained from the data can be decomposed into

fskd = C0 + C1k + f * skd, s15d

wheref* skd denotes the nonlinear part offskd. The addi-
tional C0 constant shift is introduced to account for the ir-
regular behavior of the energy of vertices with zero degrees
in the collaboration networks(the networks of scientific pub-
lications and U.S. movie actors). In these systemsfskd is
relatively smooth forkù1 in contrast to a gap in the energy
observed betweenk=0 andk=1. Accordingly,k=0 has been
excluded when fitting the empirical results, and the shift of
the kù1 part caused by the gap is taken into account with
the help ofC0. The gskd corresponding to Eq.(15) can be
written as

gskd = C0/k + C1 + g * skd, s16d

where g* skd=f* skd /k. In the expression above, the first
term decays for highk and the second is a constant; there-
fore, in practical cases the remaining nonlinear part is some-
what more apparent than in thefskd representation.

In the figures showing our results, we shall plotfskd
−C1k andgskd−C0/k−C1, since in this way both the nonlin-
ear part of the energy and the gap atk=0 for the collabora-
tion networks become apparent.

A. Testing with known energy functions

We first tested our method on known energy functions
used in Monte Carlo(MC) simulations with a constantsN
=10 000d number of vertices andkkl=2. The most trivial
choice for the energy function was the case when no energy
was present in the rewiring and the edges were replaced ran-
domly. In this case the network converges to a classical ran-
dom graph regardless of the initial state, and accordingly the
maximum degree taken into account in the reverse engineer-
ing process waskmax=7. The other tested energy was chosen
to be fskd=−k lnskd. This choice was motivated by our pre-
vious studies which showed that in this system, aroundT
=1 a scale-free degree distribution can be observed[10];
hence the interval ofk taken into account in the reverse
engineering is widerskmax=27d than in the case of random
rewiring.

Figure 2 shows our results for the two test energies. In
both cases,C0 was set to zero, andC1 was set equal to
fsk=1d [since both energies used in the MC simulations give
fs1d=0]. In both situations, the resulting empiricalf* skd
could be fitted well with the energy used in the MC simula-
tion.

B. Collaboration networks

The collaboration networks investigated in this paper can
be listed as follows: the coauthorship networks of neuro-
science and math publications, the coauthorship networks of
the Los Alamos e-print archives of Condensed Matter, High
Energy Physics—Phenomenology, and Astrophysics, and the
network of U.S. movie actors. These networks are all bipar-
tite: the collaborators(scientists, actors) and the collabora-
tions (publications, movies) can be represented by two dif-
ferent kinds of vertices, and the links in the system are

FIG. 1. We illustrate the measurement of the currentsIk→k+1 and
Ik→k−1 in the data set by comparing two subsequent states of vertex
0 in a hypothetical simple graph with 17 vertices.(Only edges
connected to vertex 0 are shown.) In the initial state(left side), the
central vertex is connected to vertices 1,2,4,5 with one edge and to
vertex 3 with two edges; hence its degree isk=6. In the second
state(right side), the link to vertex 2 and one of the links to vertex
3 disappeared giving a contributionI6→5=2 to the currents. Simi-
larly, new links to vertices 6, 12, and 13 appeared; thusI6→7=3.
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always placed between vertices of different types(a scientist
is connected to the papers in which he/she is a coauthor).
Unipartite projections of these graphs can be made by keep-
ing only one kind of the vertices and placing a link between
them if they are linked to a common vertex of the other type
in the bipartite graph. In the cases studied in this paper, the
projection onto thegraphs of collaboratorshas been used:
the nodes represent collaborators(scientists or movie actors)
and two nodes are linked if they have a common collabora-
tion (articles, movies). In the graphs obtained this way, both
edges and vertices are distinguishable and multiple links be-
tween vertices are allowed.

The collaboration network databases we have used
[22,23] provide the time of the emergence of the links, but
the times when they disappear are not defined. In other
words, the time we consider an edge to be alive after its birth
influences the structure of the graphs representing the system
year after year. This parameter will be denoted byt, the
lifetime of an edge. The minimal value fort is equal to the
time resolution of the data set. In case oft=`, the system is
simply growing and no edges are deleted. Evidently, the

choice of t may influence all statistical properties of the
network.

The number of vertices in these systems is changing
slowly with time, but the number of edge restructuring
events per time step is larger by two orders of magnitude
than the change in the number of vertices. Therefore, the
effect of the increase or decrease inN can be neglected, and
we use the time average of the right hand side of Eq.(12)
(derived for a fixedN) to calculatefskd.

The most important statistical properties of the studied
networks are summarized in Table I.

1. Neuroscience and math publications

Data on these two systems were obtained from Ref.[22].
The time resolution of the appearance of the new articles was
one year in the data set. The upper boundary of the interval
of k taken into account in the reverse engineering was in the
range of 20–40. The results in case of the neuroscience pa-
pers fort=3 yr are shown in Fig. 3, and very similar plots

FIG. 3. The empiricalfskd obtained for the neuroscience pub-
lication network(diamonds) for t=3. In order to make the nonlin-
ear part offskd more apparent, the linear part of the fit,C1k, was
subtracted from the data. The actual values obtained for the fitting
parameters wereC0=−6.7,C1=12.6,ã=0.96. A relatively large gap
betweenfskd at k=0 andk=1 can be observed. The inset shows the
correspondinggskd with C0/k+C1 subtracted from the data(boxes)
together with −ã lnskd (dashed line).

FIG. 2. fskd obtained from the restructuring data of the MC
simulation withC1k subtracted, together with fits. For the case of
E=0 (random rewiring, circles), the system converges to a classical
random graph, which results in a narrow degree distribution. In the
system withE=−k lnskd (crosses), the interval in whichfskd can be
obtained is wider. Thus the results from reverse engineering are in
good agreement with the initial MC energies.

TABLE I. The most important statistical properties of the studied collaboration networks.kmax denotes the maximal degree which
occurred frequently enough in the restructuring process to allow able extraction of the energy, andã is the fitting parameter introduced in Eq.
(17).

t=1 yr t=2 yr t=3 yr

Time span Time step kNl kkl kmax ã kNl kkl kmax ã kNl kkl kmax ã

Movie actors 1896–1999 1 yr 9223 28.04 100 0.56 15350 34.52 130 0.69 20373 39.23 150 0.74

Neurosci. publ. 1991–1998 1 yr 55057 7.837 35 0.86 87513 9.397 38 1.02 113160 10.54 44 0.96

Math publ. 1991–1999 1 yr 17279 2.737 15 0.83 29116 3.141 17 0.93 38633 3.45 20 0.99

hep-ph ’92.03–’04.02 1 month 3202 7.14 23 0.41 4386 8.52 30 0.58 5186 8.48 35 0.72

astro-ph ’92.04–’04.02 1 month 5472 10.90 60 0.44 7103 13.02 70 0.56 7891 13.98 80 0.59

cond-mat ’92.04–’04.02 1 month 5648 4.16 29 0.73 7464 4.71 34 0.96 8194 4.94 37 1.05
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were obtained for the math publications. In both cases,
f* skd andg* skd can be fitted with

f * skd = − ãk lnskd, g * skd = − ã lnskd, s17d

whereã is a positive constant. The actual value of this con-
stant wasã=0.96 for the neuroscience publications andã
=0.99 in the case of the math papers.

In both cases,fsk=0d is separated from thekù1 part by
a gap, indicating that zero connection is unfavorable for the
vertices. This is consistent with the observed degree distri-
butions, in which the vertices of zero degree were sup-
pressed.(In the case of the math papers, vertices with zero
degree were totally absent.)

For t=1 andt=2, similar results can be obtained with
modified fitting parameters.

2. The Los Alamos e-print archives

We also studied the restructuring of the coauthorship net-
works of three e-print archives: Condensed Matter, High En-
ergy Physics—Phenomenology, and Astrophysics[23]. In all
three cases, the time resolution of the appearance of the new
manuscripts was one month. To be able to compare the prop-
erties of these systems to the previously investigated coau-
thorship networks, we sett=1,2,3 yr inthese cases as well.
From the point of view of the energy, the obtained behavior
was very similar to the previous cases. For the Condensed
Matter and High Energy Physics—Phenomenology net-
works, kmax was in the range of that seen for the neuro-
science publications, and for the Astrophysics archive it was
somewhat largerskmax=80d. The nonlinear part of the em-
pirical energies could be fitted with functions of the form
given in Eq.(17). The value of the parameterã in case of
t=3 yr was ã=1.05, ã=0.77, ã=0.59 for the Condensed
Matter, High Energy Physics—Phenomenology, and Astro-
physics archives, respectively.

The results for the Astrophysics archive are shown in Fig.
4. The gap atk=0 in the energy together with the suppres-

sion of the vertices with zero degrees seen in the case of the
neuroscience and math publications is also present in all
three systems.

3. The network of movie actors

In the data of the U.S. movie actor network[22], the time
resolution of the appearance of new films was 1 yr. For this
network, the allowedk interval in the reverse engineering is
reasonably wide. Similarly to the coauthorship networks
studied in the previous paragraphs, the nonlinear part of the
empirical energy can be fitted with functions of the form
given in Eq.(17), and a gap atk=0 together with the sup-
pression of the vertices with zero degrees can be observed.
Our results fort=3 yr are shown in Fig. 5 withã=0.74.

C. Asset graphs of the New York Stock Exchange

In this study, we used the asset graph sequence received
from [24]. These graphs were constructed from correlations
of the 477 New York Stock Exchange(NYSE) traded stocks:
in a given time window the 476 most strongly correlated
pairs of papers were linked[20]. Therefore in this case the
obtained graphs were simple graphs. The market data was
recorded with a time window width of 1000 days, from 2
January 1980 to 31 December 1999, and the window was
stepped monthly. This resulted in 195 time windows. In this
case, the general rule used to determinekmax would result in
accepting such degrees also that are represented by less than
one vertex on average, thereforekmax was set equal to the
highest degree represented by at least one vertex on average,
yielding kmax=20.

Similarly to the collaboration networks, the nonlinear part
of the empirical energy can be fitted using Eq.(17) with ã
=1.7, as shown in Fig. 6. For this system, the gap in the
energy atk=0 seen in the case of the collaboration networks
is absent, and accordingly theC0 fitting parameter can be set
to zero.

FIG. 4. The empiricalfskd of the Astrophysics archive fort
=3 yr with C1k subtracted (diamonds) plotted together with
−ãk lnskd+C0 (solid line). The values of the fitting parameters read
C0=−4.8, C1=8.4, ã=0.59. Thefsk=0d is separated from thek
ù1 part by a gap, similarly to the case shown in Fig. 3. In the inset
the corresponding gskd−C0/k−C1 is shown together with
−0.59 lnskd.

FIG. 5. fskd obtained in case of the U.S. movie actor network
for t=3 with C1k subtracted from the data(diamonds). The result-
ing functions can be fitted with −ãk lnskd+C0 similarly to previ-
ously studied collaboration networks. The actual values of the fit-
ting parameters areC0=−14,C1=10.4,ã=0.74. The gap separating
fsk=0d from thekù1 part characteristic of the other collaboration
networks can be seen in this case as well. Thegskd corresponding to
this fskd is shown in the inset withC0/k+C1 subtracted from the
data, plotted together with −ã lnskd.
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VI. DISCUSSION

For each studied natural network, the nonlinear part of the
empirical single-vertex energy can be fitted with the same
universal function given in Eq.(17). We note that(due to the
relatively narrow intervals ink) power laws of the formE
=−Boiki

b can be used for fitting equally well, with fitting
parametersB and b. However, the following two reasons
make the logarithmic fitE=−ãoiki lnskid far more favorable:
first, this latter has fewer fitting parameters; and second,
since in each exampleã has been found to be very close to
unity (within a factor of 2), evenã is not a real fitting pa-
rameter.

The logarithmic fit is also consistent with the rule of pref-
erential attachment observed in growing networks
[16,25,26]. This can be shown by estimating the energy
change of a vertex by the derivative off* skd+ãk
=−ãkflnskd−1g, yielding DE/T=−ã lnskd [the irrelevant lin-
ear termãk has been added tof* skd for simplicity]. Plug-
ging this into the Boltzmann factor expf−DE/Tg, the result-
ing acception/rejection ratio for a randomly selected move is
proportional tokã. In the case ofã=1 we recover the linear
preferential attachment rule. For several growing networks,
however, the preferential attachment was found to scale aska

[16,26]. The values fora measured by Jeonget al. 16 are
close to those we obtained forã. Hence our results provide
another justification of the preferential attachment rule.

Furthermore, in the second representation of the energy,
in which vertices contribute to the total energy depending on
the degrees of their neighbors, the energy contribution of
vertexi becomesog* ski8d=−ãoi8 lnski8d, wherei8 runs over
the neighbors of vertexi. This can be interpreted as follows:
the vertices “feel” advantages in being linked to other verti-
ces of high degree; hence the magnitude of a neighbor’s
contribution to the energy of vertexi is a monotonically
increasing function of that neighbor’s degree. The distinction

between the neighbors in this picture follows the general
Weber-Fechner law of sensation: a stimulus of a given de-
gree generates a perception proportional to the logarithm of
that degree in the neighbors. This logarithmic law of percep-
tion is natural in cases where the intensity of the stimulus
may vary over several orders of magnitude, which is the case
for degrees in scale-free networks.

Another situation where the use ofgskd is very convenient
is when it is advantageous to reach many other vertices via
short paths, but it is expensive to have lots of connections.
Under such circumstances the best strategy is to connect to a
few other vertices with high degrees: numerous vertices can
be reached in two steps at the cost of few own links. If the
number of total edges is allowed to vary, such a scenario
could simply be modeled by a decreasinggskd function[such
as −lnskd] together with a negative chemical potential(cor-
responding to a linear penalty for the own links of a vertex).

VII. SUMMARY

We developed a reverse engineering method to deduce the
preferences governing the restructuring in nongrowing net-
works from the statistics of the observed relocations. Our
approach is applicable to systems where the preferences can
be interpreted by single-vertex energy functions and the dy-
namics obeys detailed balance. The method was first tested
on Monte Carlo simulations run with known energy func-
tions, yielding reassuring results. Real networks such as the
coauthorship network of scientific publications, the network
of U.S. movie actors, and the asset graphs of the New York
Stock Exchange were also studied.

In each case, the nonlinear part of the single-vertex en-
ergy function could be fitted with the same universal func-
tion E=−ãoiki lnskid with 0.5,ã,2. This energy is shown
to be consistent with the preferential attachment rule of
growing networks.

Furthermore, the obtained energy can be alternatively
written asE=−ãoioi8 lnski8d, where the summation fori8
runs over the neighbors of vertexi. In this representation the
energy contributions of the vertices can be interpreted by the
general Weber-Fechner law of sensation: the stimulus of a
given vertex generates a perception in its neighbor propor-
tional to the logarithm of that degree.
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FIG. 6. The empiricalfskd of the asset graphs of the New York
Stock Exchange withC1k subtracted from the data(diamonds),
plotted together with −ãk lnskd (solid line). The fitting parameters
wereC0=0, C1=8.5, ã=1.7. The inset showsgskd−C1 plotted to-
gether with −ã lnskd.
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