

## Northeastern University

Mechanical Engineering Master's Theses

Department of Mechanical and Industrial Engineering

January 01, 2011

# Analysis and verification of fatigue reliability variation under two-stage loading conditions

Bharadwaj Sathiamoorthy

**Recommended** Citation

Sathiamoorthy, Bharadwaj, "Analysis and verification of fatigue reliability variation under two-stage loading conditions" (2011). *Mechanical Engineering Master's Theses.* Paper 57. http://hdl.handle.net/2047/d20004052

This work is available open access, hosted by Northeastern University.

# ANALYSIS AND VERIFICATION OF FATIGUE RELIABILITY VARIATION UNDER TWO-STAGE LOADING CONDITIONS.

MS thesis presentation

By

**Bharadwaj Sathiamoorthy** 

#### ABSTRACT

The effective life of a specimen is calculated as the time from when the specimen is in its operating conditions to the time of its failure and reliability indicates probability of survival of the specimen or product. In material science, this effective life is represented as the number of loading cycles until the failure of the specimen. Life of any product or specimen is inversely proportional to the load (stress or strain) applied on it. Practically, external loading is mostly fluctuating and various levels of loads are applied on the same specimen causing the specimen to fail over time and this is referred to as fatigue failure under variable amplitude loading. Researches in the past have even shown that life prediction under variable amplitude loading under variable amplitude loading, it is important to derive a method which can predict and analyze reliability variations under various conditions.

In this study we have combined reliability prediction methods from past researches and presented a method to predict the fatigue reliability of a specimen under two-stage loading conditions with the help of failure data under constant amplitude loading, two dimensional probabilistic Miner's rule and Weibull analysis. Corresponding reliability values of the specimen at different stages are calculated. A significant relationship between reliability of the specimen and the change in stress level is derived with the help of test data results from simulation. The consistency of the obtained reliability values is examined by further calculating the Miner's verification coefficient and the variation in consistency is also studied.

#### **Thesis Advisor**

Dr. Nasser S. Fard, Associate Professor of Mechanical & Industrial Engineering Department, Northeastern University, Boston, MA 02115.

## 1. INTRODUCTION

Understanding, designing and determining the life of a product or specimen is very vital in any field. The mechanical life of a specimen or product has a diversified definition [1] but in materials science, it is most widely recognized as the number of loading cycles until the product or the specimen fails. For many years now statisticians, scientists, engineers in the field of mechanical and reliability have been consistently working in the field of life cycle engineering, reliability engineering, and fatigue analysis. The research works conducted in all these domains aid in deriving an efficient way to determine the reliability or life of a specimen or product.

Practically, life of any product or specimen deteriorates as time progresses. Life of a product in most cases is inversely proportionate to the load applied on it i.e. if the value of load applied on the product increases linearly then the remaining time of survival decreases. The changes in properties resulting from the application of cyclic loads are referred to as fatigue of materials. In simpler terms fatigue is understood as damage and failure of materials under cyclic loads. In this report fatigue is defined as a term which 'applies to changes in properties which can occur in a material due to the repeated application of stress leading to a crack or a failure'. Fluctuations in externally applied stresses or strains result in mechanical fatigue.

If the mean of the cyclic load applied is constant then the type of loading is referred to as constant amplitude loading. If the mean of the cyclic load applied changes after a period of time then the type of loading is referred to as variable amplitude loading. The study of fatigue properties of material under variable amplitude loading is more complicated when compared to constant amplitude loading since the variation in properties becomes more unpredictable and there is no specific pattern.

It is well known that the study of fatigue life of any product or specimen under variable amplitude loading requires the combination of several appropriate methods. In this paper, we will present a method to predict the fatigue reliability of a specimen under two-stage loading conditions [2] with the help of constant amplitude test data, two dimensional probabilistic Miner's rule [3 and 4] and Weibull analysis. Corresponding reliability values of the specimen at different stages are calculated. A significant relationship between reliability of the specimen and the change in stress level is derived with the help of test data results from simulation. The consistency of the obtained reliability values is examined by further calculating the Miner's verification coefficient [5 and 6] and the variation in consistency is also studied.

Let us first discuss the important terms and properties associated with life cycles and reliability of a specimen from which the significance of determining the reliability or life can be understood in the first few sections and then delve into fatigue life analysis.

#### LIFE OF A SPECIMEN AND RELIABILITY DEFINITION

All products and specimens manufactured have a specific life time. This life time represents the time until which the product or the specimen functions effectively. The life of a specimen can be represented in several appropriate ways respective to the type of specimen and load applied on it. The effective life of a specimen is calculated as the time from when the specimen is in its operating conditions to the time of its failure, hence it is a function of its operating conditions. The two important terms which need to be understood here are 'operating conditions' and 'failure'. In materials science, operating conditions are generally loading characteristics.

Similarly, the other equally significant term 'reliability' indicates the probability of survival over a period of time. Reliability [7] indicates the life of a specimen or a product. Hence, it is very important that we understand how to derive the reliability of a specimen. Knowing the reliability of a component or a specimen, it is easy to predict the failure time of that component. These two concepts form the base of our research 'Fatigue Reliability Prediction Under Variable Two-Stage Loading Conditions'.

#### 1.1 LOAD, TYPES OF LOAD, FAILURE AND TYPES OF FAILURES

Load, types of load, failure and types of failures are all interconnected. Materials science helps understanding of these terms very clearly.

#### **1.1.1** Load and types of loads

In this paper, load is generally referred to as mechanical load which means forces acting upon a body from a mechanical source. There are different ways in which a load can be applied upon a body. If the load acts along the body of the specimen in such a way that it pulls both the ends of the specimen in the opposite direction, the type of loading is referred to as tensile loading. If the force load acts in such a way that it compresses the specimen, it is compressive loading. A type of load which causes object to twist due to torque is called torsion load. Any translational or external load which causes shear stress upon the body is called shear load. The following illustrative diagrams can be help in better understanding.



#### **1.1.2** Failures, types of failures and important terms associated with failures.

Failure of a component is the state of the component at which it has lost its potential to ever perform its designated operations. In mechanical terms failure is usually referred to as a fracture.

There are many different kinds of mechanical failure, and they include overload, impact, fatigue, creep, rupture, stress relaxation, stress corrosion cracking, corrosion fatigue and so on. Each produces a different type of fracture surface, and other indicators near the fracture surface(s). The way the product is loaded, and the loading history are also important factors which determine the outcome. The design geometry is also of critical importance as it influences crack growth.

From the above we understand that there are a lot of factors which influence the failure of a specimen or component. Failure is completely subjective. A failure can happen suddenly or gradually, mostly depending upon the material of the specimen. There are significant factors which are involved in both cases like tensile strength,

yield strength, neck formation, plastic deformation, elastic deformation and ultimate tensile strength [8].

Now with the understanding of above definitions and concepts we can further delve into the details of our research. In the next section, the objectives of the research will be clearly summarized.

# 2. RESEARCH OBJECTIVES AND SUMMARY

In this research study, we will present a method to estimate the reliability of a specimen under different two stage fatigue loading conditions and hence analyze the reliability variation with change in stress levels. Fatigue life [9] analysis of specimens has always been inherently challenging. The method involved in estimating the reliability of components under fatigue loading is not a conventional one. In this research we will propose an appropriate method to estimate the fatigue reliability under two-stage loading condition and then conduct variation analysis in reliability values under high and low values of stress. The corresponding variations in consistency are also studied with the help of Miner's verification coefficient.

Estimation of fatigue reliability in two-stage loading means the estimation of survival probability of the specimen after the first stage. Otherwise, it is referred to as the determination of number of cycles to failure in the second stage for a given percentage of reliability. Two-stage loading [2] refers to a loading condition experienced by a specimen subjected to two different level of stress at different times. In this study, we have generated failure data using simulation and provided the method a numerical example and verified the method. Further, a study on the Reliability variation has been done by bringing the change in stress level by altering the Weibull parameters accordingly in the second stage and generating five different sets of failure data. This study also contains the verification of the apt distribution to fit the failure data by comparing reliability, calculated residual life and the experimental residual life with the help of the verification coefficient from Miner's Rule. The variations in the verification coefficient is then observed to determine the level of accuracy of the method proposed at both high and low shape values (Weibull parameter) or high and low stress levels. In the later sections we will understand the details of the reliability estimation method and its verification.

The research is completely oriented on the failure data from simulation and the appropriate values assumed during the simulation of the data.

# 3. FATIGUE RELIABILITY ANALYSIS

Before we proceed any further into the paper, it is necessary we understand the core concept of this research, why it is important to do this research and how significantly does it contribute to the existing research.

Fatigue reliability analysis is the prime objective of this research. Many researches have been conducted in the field of fatigue reliability and still the area has a lot of spots to investigate on. Fatigue reliability analysis refers to the study of a specimen's life cycle which under fatigue loading. Reliability analysis completely defines a specimen's probability of survival at any given stage. The disciplined approach is to investigate the failure occurrence. In general reliability theory, the concept of a failure rate  $\mu(t)$  is often used as an alternative description of the lifetime distribution of a specimen. Let 'T 'be the random lifetime of a specimen,  $f_T(t)$  its probability density. The nonnegative function  $\mu(t)$ , defined as

 $\mu(t) = \frac{f_T(t)}{1 - F_T(t)}$ , is called the failure intensity function or fatigue failure rate (or hazard function).  $\mu(t)$  characterizes the failure time hence it is necessary to fit a suitable distribution and investigate the times to failure. Hence with the help of an appropriate probabilistic distribution and data from test results, we can analyze the time to failure of the specimen.

In this research we need to know how to perform reliability analysis of fatigue data. In our study, the loading conditions are variable amplitude (two-stage loading). This implies there are two different loading stages experienced by the same specimen. The type of strain experienced by the specimen is known as 'fatigue'.

Specimens are first subjected to stage 1 level loading for a specific period of time (in terms of no. of cycles), which is usually pre-determined. Then the remaining specimens which survived stage 1 level of loading is subjected to another stage 2 level loading until failure. The failure data is then collected. Using this test data and fitting it to an appropriate distribution completes the fatigue reliability analysis of the specimen.

In this research we have generated test data through simulation to analyze results. Appropriate values for the levels of stress have been assumed. The failure data is generated randomly, choosing a random distribution and a failure interval corresponding to the stress levels in terms of number of loading cycles. The details of these assumptions are explained under sections 6, 7 & 8 of this report.

#### 4. PROBABILISTIC MINER'S RULE IN FATIGUE RELIABILITY ANALYSIS

The prediction of fatigue life under two-stage loading has always been obscure. Studying some of the successful works and combining methods done under two-stage loading condition, in this paper we have proposed an appropriate method to estimate the fatigue reliability under two-stage loading conditions. Hence we use the constant amplitude test data of the specimen to predict the fatigue life under variable amplitude loading. So the Probabilistic Miner's rule is used to predict the variable amplitude fatigue life given the constant amplitude test data.

Miner's rule is believed to be most researched area in the field of fatigue reliability analysis. This section is a brief description of the Two-Dimensional Miner's rule from the existing literatures.

In the following, *D* denotes fatigue damage, *S* denotes either stress amplitude  $S_a$  or mean stress  $S_m$ ,  $n_{ij}$  represents the number of loading cycles applied in a multi stage loading block,  $N_c$  denotes fatigue life under constant amplitude loading,  $N_v$  denotes fatigue life under variable amplitude or stochastic time-history loading, *N* denotes cycles of fatigue loading in any form,  $N_{cp}$ ,  $N_{vp} \& n_{pij}$  are percentile constant amplitude loading, percentile variable amplitude loading and percentile number of loading cycles applied respectively.

In the first place, four basic assumptions of the evolution of nonlinear fatigue damage are proposed as follows [10 and 11]:

- 1. Monotonic increasing: dD/dN > 0; and  $\delta(dD/dN)\delta S > 0$ ; for each individual in a specimen population under constant amplitude loading.
- 2. Noncoupling: for each individual specimen under variable amplitude loading, the damage path D-N in each loading stage is the same as the corresponding D-N path under constant amplitude loading.
- **3.** Separability: for each individual specimen, the fatigue damage growth ratio under constant amplitude loading can be described by a generally separable function  $dD/dN = f^{-1}(D)g(Sa,Sm)$ .
- **4.** Nonintersecting: for any two different individuals in a specimen population under constant amplitude loading, the two individuals' *Sa–Sm–Nc* surfaces do not intersect with each other in the range Sa > 0 and Nc > 0.

From the above four phenomenological assumptions about fatigue damage, a new random fatigue accumulative damage rule, namely, TPMiner has been established.

$$\sum_{i} \sum_{j} \left( n_{pij} / N_{cpij} \right) = 1, \ N_{\nu p} = \sum_{i} \sum_{j} n_{pij}, \tag{1}$$

$$\Pr\{N_{\nu} \le N_{\nu p}\} = 1 - p \tag{2}$$

Where  $n_{pij} = n_p(S_{ai}, S_{mj})$  is the cycle number of  $(S_{ai}, S_{mj})$ . In variable amplitude loading,  $N_{cpij} = N_{cp}(S_{ai}, S_{mj})$  is the constant amplitude fatigue life corresponding to  $(S_{ai}, S_{mj})$ , pdenotes reliability (survival probability), and  $n_p$ ,  $N_{cp}$  and  $N_{vp}$  are percentiles with p, respectively.

In practical engineering, structural components usually are subjected to fluctuating load which is of stochastic time-history. Nevertheless, both the multistage loading block and the continuous one can be obtained by using rain-flow counting method [12].

More than 40 sets of test data have been employed by the author to verify TPMiner on the conditions of variable amplitude loading [13]. The results are very encouraging.

# 5. FATIGUE RELIABILITY ANALYSIS UNDER TWO-STAGE LOADING CONDITION

In this section we will discuss the analytical approach to estimate the fatigue reliability of the specimen under two-stage loading condition. First we need to understand what a two-stage loading condition is. Suppose we subject the specimen population to stress level I which is represented by  $(S_{a1}, S_{m1})$ , where  $S_{a1}$  is the stress amplitude and  $S_{m1}$  is the mean stress. Then the same set of specimen population is subjected to stress level II which is represented by  $(S_{a2}, S_{m2})$ . Each individual in the specimen population is run to  $n_1$  number of cycles in stage I and then the specimens are run until failure in stage II or stress level II. While  $n_1$  is a given number of cycles or is predetermined,  $n_2$  is a random variable of the specimen population.

Now, in this situation when a specimen population is subjected to variable stress levels or two different stages of stress then there are several possible cases which have to be studied. The different cases are discussed below:

#### CASE I:

All the specimens in the population fail in the first stage. This happens when  $n_1$  is very large.  $N_{c1}, N_{c2}$  are the constant amplitude lives of the specimen under stress level I and stress level II respectively. If  $n_1 > N_{c1}$  then the entire specimen population fails in stage I itself. From experimental results, it can be verified that the constant amplitude lives follow log-normal distribution, i.e. lg  $N_{c1} \sim N(\mu_1, \sigma_1)$  and lg  $N_{c2} \sim N(\mu_2, \sigma_2)$ , where  $\mu$  and  $\sigma$  are the logarithmic mean and standard deviation respectively. For a given number of cycles  $n_1$ , one can obtain

$$p_0 = \Pr\{N_{c1} > n_1\} = 1 - \varphi(\frac{\lg n_1 - \mu_1}{\sigma_1})$$
(3)

Where,  $\varphi$  is the standard normal distribution function,  $p_0$  is the reliability, i.e. the percentage of the specimen population survive  $n_1$  cycles at the first level  $(S_{a1}, S_{m1})$ .

#### CASE II:

Some of the specimens from the entire population fail in stage I. In this case  $p_0 < 1$ . This happens when  $n_1$  is anywhere close  $N_{c1}$ . This means some individuals of  $(1 - p_0) \times 100\%$  of the population will fail at the first loading level and for those individuals  $n_2 = 0$ .

#### CASE III:

There are no failures in the first loading level or stage I. i.e. none of the specimens from the population fails until  $n_1$  cycles. In this case  $p_0 = 1$ . This happens when  $n_1$  takes a small value or when  $n_1 < N_{c1}$ . All the specimens are then run until failure in the II stage for  $n_2$  cycles which is a random variable.

Case III is what would be studied in this research. Since this case represents several practical applications, it is necessary that we understand how to estimate the life in this case.

Let  $N_{\nu}$  be the total variable fatigue life of the specimen population under two-stage loading, then

$$N_{\nu} = (n_1 + n_2), N_{c1} > n_1 \tag{4}$$

Further, let  $N_{vp}$ ,  $N_{c1p}$  and  $N_{c2p}$  denote percentiles of p% survival of random variable  $N_v$ ,  $N_{c1}$  and  $N_{c2}$  respectively. If  $N_{c1p} > n_1$ , then  $n_{2p} = N_{vp} - n_1$ . According to equation (1) of TP Miner's rule, it follows that

$$\frac{n_1}{N_{c1p}} + \frac{n_{2p}}{N_{c2p}} = 1, p < p_0(N_{c1p} > n_1)$$
(5)

When  $p_0 = 1$ , the reliability-based fatigue life prediction under two-stae loading can be achieved by directly using the above equation as follows

$$N_{vp} = n_1 + n_{2p} = n_1 + N_{c2p} \left(1 - \frac{n_1}{N_{c1p}}\right), \Pr\{N_v > N_{vp}\} = p$$
(6)

From a lot of test results in literature, it can be found that the conditional probability distribution of  $n_2$  is not log-normal unless  $p_0=1$ . Particularly when  $p_0 < 1$ , the conditional probability of the residual life  $n_2$  can be fitted by a three-parameter Weibull distribution [14].

$$\Pr\left\{\frac{n_2 \le n_{2p'}}{N_{c1} > n_1}\right\} = 1 - \exp\left\{-\left(\frac{n_{2p'} - x_0}{b}\right)^c\right\} = 1 - p'$$
(7)

Where  $n_{2p'}$  is the conditional percentile with p' and c, b and  $x_0$  are the Weilbull shape parameter, characteristic parameter and position parameter respectively.

Now setting 
$$n_{2p'} = n_{2p} = N_{vp} - n_1$$
, one can obtain  
 $p' = p/p_0$ 
(8)

Given a two-stage loading  $(S_{a1}, S_{m1}, n_1; S_{a2}, S_{m2})$  as well as the probability distributions of the two constant amplitude fatigue lives  $N_c(S_{a1}, S_{m1})$  and  $N_c(S_{a2}, S_{m2})$ , it is easy to perform reliability-based prediction of the residual life and the total life  $N_v$ .

#### 6. SIMULATION ANALYSIS OF TEST DATA AND RESULTS

Now we know the method we are going to employ in analysis of fatigue data is the Probabilistic Miner's Rule. TPMiner'r rule will form the basis of the analytical analysis. However, there are other significant methods which might also prove effective. In order to perform the reliability

analysis, we need to first analyze the data we have generated. Since this is a probabilistic approach, we need to fit appropriate distributions for the data in order to further analyze it.

In the previous section we examined three different scenarios of fatigue conditions. Combining the methods employed in these 3 cases we can find out what distribution can be of best fit to failure data from two stage loading. According to case (I), if the entire specimen population fails in 1<sup>st</sup> loading stage itself then the failure times of the specimens are said to follow Log-Normal Distribution [15]. In this case the value of  $n_1$  is lesser compared to the constant amplitude life of the specimen. In other words, the number of loading cycles applied is more than the total number of life cycles the specimen can survive for (under a specific stress level). In this case the reliability of the specimen at any given stage can be found using the following,

$$p_0 = \Pr\{N_{c1} > n_1\} = 1 - \varphi(\frac{\lg n_1 - \mu_1}{\sigma_1})$$
(9)

Where,  $p_0$  is the probability of survival,  $p_0$  is the reliability, i.e. the percentage of the specimen population survive  $n_1$  cycles at the first level  $(S_{a1}, S_{m1})$ ,  $\boldsymbol{\varphi}$  is the standard normal distribution function.  $N_{c1}$  is log-normally distributed with mean and variance  $\mu_1$ ,  $\sigma_1$  respectively.

This method holds good for reliability analysis under single stage fatigue loading but we want the specimen to pass through two different stages of loading and then perform the reliability analysis. Hence if we take into consideration of case (III), where we had discussed about the specimen being tested under two different stages of loading we can conclude that the failure time of specimens in the second stage alone is considered to follow 3P-Weibull distribution or otherwise the residual life,  $n_{2p'}$  is said to follow 3P-Weibull distribution. The probability of survival under the second stage alone can be estimated as follows:

$$\Pr\left\{\frac{n_2 \le n_{2p'}}{N_{c1} > n_1}\right\} = 1 - \exp\left\{-\left(\frac{n_{2p'} - x_0}{b}\right)^c\right\} = 1 - p'$$
(10)

i.e., given the condition  $N_{c1} > n_1$  (constant amplitude fatigue life in stage I is greater than the no. of cycles applied in stage I) then the probability of survival in the second stage can be estimated using the above formulation where  $x_0, b \& c$  are the location parameter, scale parameter and the shape parameter respectively.

Now we can combine these two cases to derive the method for the reliability analysis under two stage fatigue loading condition under these assumptions:

- 1. There are no failures in stage 1
- 2. Best fit distribution.

The estimation of reliability represents the probability of survival of a specimen after passing through both the stages. Now, we know how to calculate the survival probabilities individually

for each stage. Combining both these methods and using the principles of TP Miner's rule we can frame the reliability estimation methods for two stage loading as follows:

Generally, if  $n_1$  takes such a small value that  $p_0=1$ ; then the whole population of specimen will not fail at the first loading level. However, when  $n_1$  becomes large to a certain degree one can obtain  $p_0 < 1$ ; that means some individuals of  $(1 - p_0) * 100\%$  of the population will fail at the first loading level, and for those individuals  $n_2 = 0$ :

Let 
$$N_{\nu}$$
 be the total fatigue life of specimen population under two-stage loading, then  
 $N_{\nu} = N_{c1}, N_{c1} \le n_1; N_{\nu} = n_1 + n_2, N_{c1} > n_1.$  (11)

Further, let  $N_{vp}$ ,  $N_{c1p}$  and  $N_{c2p}$  denote percentiles of p% survival of random variables  $N_v$ ,  $N_{c1}$ ,  $N_{c2}$  respectively. If  $N_{c1p} > n_1$ , then  $n_{2p} = N_{vp} - n_1$ . According to Eq. (1) of TPMiner, it follows that

$$\frac{N_{vp}}{N_{c1p}} = 1, p \ge p_0 (N_{c1p} \le n_1)$$
(12)

$$\frac{n_1}{N_{c1p}} + \frac{n_{2p}}{N_{c2p}} = 1, p \le p_0(N_{c1p} \ge n_1)$$
(13)

Consequently when  $p_0=1$ , the reliability-based fatigue life prediction under two-stage loading can be achieved by directly using Eq. (13) as follows:

$$N_{vp} = n_1 + n_{2p} = n_1 + N_{c2p} \left(1 - \frac{n_1}{N_{c1p}}\right)$$

$$\Pr\{N_v > N_{vp}\} = p$$
(14)

However, when  $p_0 < 1$ , the fatigue life of the population should be divided into two parts. And Eq. (12) applies to the part of  $p \ge p_0$  while Eq. (13) applies to the other part.

In fatigue tests under two-stage loading, many researchers focus their attention on the residual life  $n_2$ . From a lot of test results in literature, it can be found that the conditional probability distribution of  $n_2$  is not log-normal unless  $p_0 = 1$ . When  $p_0 < 1$ , the conditional probability of the residual life is fitted by the 3-parameter Weibull Distribution rather than log-normal distribution. Therefore,

$$\Pr\left\{\frac{n_2 \le n_{2p'}}{N_{c1} > n_1}\right\} = 1 - \exp\left\{-\left(\frac{n_{2p'} - x_0}{b}\right)^c\right\} = 1 - p'$$
(15)

Where  $n_{2p'}$  is the conditional percentile with p', and c,b and  $x_0$  are the Weibull shape parameter, characteristic parameter and position parameter, respectively.

Now setting  $n_{2p'} = n_{2p} = N_{\nu p} - n_1$ , one can obtain,

$$p' = \Pr\{N_{\nu} > N_{\nu p}\} / \Pr\{N_{c1} > n_1\} = p/p_0$$
(16)

For the proof of the above equation please refer to [16]

Now following the procedure below and using the equations from (9) to (16) we can obtain the reliability of the specimen under two stage loading condition

- 1. Assumption of appropriate stress levels  $(S_{a1}, S_{m1})$  and  $(S_{a2}, S_{m2})$ .
- 2. Assumption of the constant amplitude lives  $N_{c1} \& N_{c2}$ . Which in the simulation model are assumed with an appropriate mean and a standard deviation. Table (1) shows the constant amplitude lives. Also the value of  $n_1$  is assumed to be lesser than  $N_{c1}$ . Hence  $p_0 = 1$ .
- 3. Generate random Weibull data (100 samples) assuming values for the three parameters of Weibull. (Assumptions made here correspond with the assumptions made for  $N_{c1} \& N_{c2}$ ).
- 4. Now the software generates random failure data (time to failure in terms of no. of cycles).
- 5. Now the appropriate 3 parameters of Weibull for this random failure data are estimated by fitting (distribution fitting) this set of data to Weibull distribution in EasyFit. 3 parameters of Weibull can also be estimated by other means [17].
- 6. Now we have the 3 parameters of Weibull for the first set of failure data.
- Arrange the failure data in ascending order and the data will now represent no. of cycles to 1<sup>st</sup> failure, no. of cycles to 2<sup>nd</sup> failure,..., no. of cycles to 100<sup>th</sup> failure.
- 8. By using Eq. (9), calculate  $p_0$
- 9. By using Eq. (15), calculate p' for each of  $n_2(n_{2p'})$  of the failure data from simulation.
- 10. According to Eq. (16), calculate  $p = p'p_0$  corresponding to each  $n_{2p'}$ .
- 11. Now we have the reliability at every stage (for every value of  $n_{2p'}$ ). Now assume another stress value for  $(S_{a2}, S_{m2}, N_{c2})$  and appropriately alter the parameters of Weibull and generate the second set of random failure data. While altering the parameters, the Weibull characteristics [18] have to be taken into consideration since the parameter alteration is the direct reflection of stress change.
- 12. Do the 3 parameter Weibull distribution fitting to the second set of failure data and estimate the 3 parameters of Weibull. Repeat steps 7-10 five times to obtain 5 different sets of data.
- 13. Now we have the reliability for the second set of data. Similarly generate 5 sets of random data assuming 5 different values for  $(S_{a2}, S_{m2})$  by changing the Weibull parameters according to Weibull characteristics and estimate the reliability for each  $n_{2p'}$ . Table (2) shows the calculated reliability values at each stage for 5 different sets of failure data (low values of stress or shape parameter (1.0-2.0)).

#### ASSUMPTIONS MADE FOR LOW LEVELS OF STRESS

| DEFINITION                                                 | ΝΟΤΑΤΙΟΝ        | ASSUMED VALUES                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEFINITION                                                 | NOTATION        | ASSUMED VALUES                                                                                                                                                                                                                                                                          |
|                                                            |                 |                                                                                                                                                                                                                                                                                         |
| Constant Amplitude Fatigue<br>life (Level I)               | N <sub>c1</sub> | $\log N_{c1} \sim N(4.962, 0.03)$                                                                                                                                                                                                                                                       |
| Constant Amplitude Fatigue<br>lives (different level II's) | N <sub>c2</sub> | $\begin{array}{l} \text{Log } N_{c2} \sim \text{N}(4.6573, 0.04) \\ \text{Log } N_{c2} \sim \text{N}(4.585, 0.03) \\ \text{Log } N_{c2} \sim \text{N}(4.5357, 0.066) \\ \text{Log } N_{c2} \sim \text{N}(4.5102, 0.063) \\ \text{Log } N_{c2} \sim \text{N}(4.4698, 0.069) \end{array}$ |
| Probability of survival in stage I                         | $p_0$           | $p_0 = 1$                                                                                                                                                                                                                                                                               |
| No. of loading cycles applied in stage I                   | $n_1$           | $n_1 = 80000$                                                                                                                                                                                                                                                                           |
| Shape parameter                                            | C               | C=1.3085, 1.443, 1.5658, 1.6131, 1.8416                                                                                                                                                                                                                                                 |

TABLE 1

| C = 1.3085  |             | C = 1.443   |             | C = 1.5658   |              | C = 1.613   | 1              | C = 1.8416  |             |
|-------------|-------------|-------------|-------------|--------------|--------------|-------------|----------------|-------------|-------------|
| Failure tin | Reliability | Failure tin | Reliability | Failure tin  | Reliability  | Failure t   | in Reliability | Failure tir | Reliability |
| 14498.12    | 0.998009    | 12133.09    | 0.997595    | 10276.01     | 0.995144     | 9960.67     | 1 0.995047     | 8744.226    | 0.997501    |
| 14746.03    | 0.991985    | 12350.69    | 0.991768    | 10493.42     | 0.98878      | 10024.1     | 9 0.993375     | 9066.692    | 0.990844    |
| 14968.82    | 0.985353    | 12686.15    | 0.979565    | 10516.32     | 0.988006     | 11391.      | 1 0.92607      | 10683.85    | 0.909873    |
| 16869.59    | 0.90901     | 12686.47    | 0.979552    | 12071.22     | 0.905303     | 11482.7     | 4 0.919989     | 11082.14    | 0.880328    |
| 16924.71    | 0.906505    | 14488.81    | 0.880618    | 12394.88     | 0.882933     | 11509.2     | 3 0.918203     | 11796.97    | 0.820514    |
| 17608.23    | 0.874736    | 14818.83    | 0.8591      | 12455.33     | 0.878622     | 12660.7     | 8 0.83102      | 11919.88    | 0.809507    |
| 18888.4     | 0.813095    | 14961.15    | 0.849637    | 13862.02     | 0.770128     | 12673.0     | 5 0.830012     | 12124.95    | 0.790756    |
| 18898.85    | 0.812586    | 16825.34    | 0.720412    | 13878.84     | 0.768766     | 13031.7     | 8 0.80008      | 13352.8     | 0.67151     |
| 18953.92    | 0.809904    | 16838.66    | 0.719476    | 14096.02     | 0.751109     | 14597.3     | 3 0.66261      | 13434.25    | 0.663354    |
| 20730.45    | 0.723534    | 16839.75    | 0.7194      | 14953.17     | 0.680702     | 14849.1     | 5 0.640302     | 13443.61    | 0.662415    |
| 21065.21    | 0.707466    | 18934.57    | 0.575794    | 15017.69     | 0.675395     | 15143.8     | 8 0.614341     | 14854.22    | 0.521936    |
| 21572.59    | 0.683338    | 19004.45    | 0.571199    | 15177.94     | 0.66223      | 16112.1     | 1 0.531124     | 14909.17    | 0.516598    |
| 23254.6     | 0.605883    | 19089.78    | 0.565611    | 15315.3      | 0.650971     | 16224.4     | 2 0.52175      | 15062.41    | 0.501803    |
| 23985.32    | 0.573698    | 21689.83    | 0.409393    | 14953.17     | 0.680702     | 16342.8     | 5 0.511941     | 16452.13    | 0.375736    |
| 24179.39    | 0.565317    | 21826.85    | 0.401999    | 15017.69     | 0.675395     | 16112.1     | 1 0.531124     | 16510.29    | 0.370842    |
| 25836.87    | 0.496777    | 22269.81    | 0.378705    | 15177.94     | 0.66223      | 16224.4     | 2 0.52175      | 16516.85    | 0.370292    |
| 25963.71    | 0.491764    | 22393.42    | 0.372373    | 15315.3      | 0.650971     | 16342.8     | 5 0.511941     | 18803.22    | 0.207742    |
| 26163.13    | 0.483951    | 25399.58    | 0.240735    | 16878.72     | 0.526472     | 17847.9     | 3 0.395221     | 18993.87    | 0.1969      |
| 28040.4     | 0.414576    | 25407.02    | 0.240461    | 17132.46     | 0.507206     | 17955.1     | 4 0.387535     | 19091.05    | 0.191533    |
| 28465.84    | 0.399908    | 25958.26    | 0.220835    | 17176.06     | 0.50393      | 18061.3     | 8 0.380008     | 18803.22    | 0.207742    |
| 29685.75    | 0.359999    | 27464.95    | 0.173667    | 17389.48     | 0.488035     | 18224.4     | 0.368628       | 18993.87    | 0.1969      |
| 30797.87    | 0.326351    | 28241.33    | 0.152804    | 18662.28     | 0.398834     | 19513.0     | 9 0.286351     | 19091.05    | 0.191533    |
| 32211.15    | 0.287233    | 28476.27    | 0.14692     | 19078.77     | 0.371909     | 19933.5     | 8 0.262483     | 20244.79    | 0.13574     |
| 32394.61    | 0.282445    | 29122.48    | 0.131709    | 19180.45     | 0.365513     | 20029.3     | 3 0.257253     | 20704.39    | 0.117371    |
| 38523.58    | 0.156579    | 29292.57    | 0.127935    | 21438.42     | 0.242018     | 22010.      | 5 0.165434     | 20790.09    | 0.114172    |
| 38628.32    | 0.15494     | 35661.62    | 0.039524    | 21472.54     | 0.240422     | 23158.5     | 2 0.125418     | 20837.85    | 0.11242     |
| 38766.96    | 0.152792    | 36441.86    | 0.033861    | 21840.33     | 0.223718     | 23444.      | 6 0.116784     | 21445.9     | 0.091922    |
| 45119.18    | 0.078631    | 36784.31    | 0.031616    | 26557.88     | 0.079762     | 29320.7     | 4 0.022257     | 23688.57    | 0.040817    |
| 45727.72    | 0.073606    | 37290.27    | 0.028548    | 26801.31     | 0.075241     | 30202.5     | 4 0.016842     | 26466.83    | 0.012872    |
| 45789.59    | 0.073111    | 40695.62    | 0.014032    | 32997.81     | 0.014603     | 30396.7     | 8 0.015823     | 26564.06    | 0.012327    |
| 53449.63    | 0.030809    | 41779.78    | 0.011101    | 36792.64     | 0.004669     | 30702.      | 5 0.014332     | 31111.35    | 0.00131     |
|             |             |             | -           | TABLE 2 (1 < | C < 2) RELIA | BILITY ESTI | MATION         |             |             |

# 7. RELIABILITY VARIATION ANALYSIS

Now we have estimated the reliability at all the stages of failure for five different stress values. Now we can analyze how reliability varies with change in stress levels.

- 1. First we need to choose a common interval for all five set of failure data between which we will analyze the reliability variation.
- 2. Once we choose an interval, using the 3 parameters of Weibull we estimated earlier for the 1<sup>st</sup> set of failure data, we estimate the value of reliability using Eq (9), (15) & (16) for each of the failure time in the interval.

- 3. Similarly, using 3 parameters of Weibull for the 2<sup>nd</sup> set of failure data, we estimate reliability values for each failure time in the interval. Same steps are followed to obtain reliability values for the 5 different stress levels (here represented by 5 sets of Weibull parameters).
- 4. Now, plot the graph Cycle time vs Reliability as shown in figure (1).
- 5. Table (3) shows the different values calculated between the failure time interval 15000-20000 and figure (1) shows the reliability variation graph.



|              | C = 1.3085  | C = 1.443   | C = 1.5658  | C= = 1.6131 | C = 1.8416  |
|--------------|-------------|-------------|-------------|-------------|-------------|
| Failure time | Reliability | Reliability | Reliability | Reliability | Reliability |
| 15070        | 0.982074    | 0.842336    | 0.671095    | 0.620829    | 0.501074    |
| 15080        | 0.981742    | 0.841662    | 0.670273    | 0.61995     | 0.500114    |
| 15090        | 0.981409    | 0.840989    | 0.669451    | 0.619071    | 0.499154    |
| 15100        | 0.981075    | 0.840314    | 0.66863     | 0.618193    | 0.498196    |
| 15110        | 0.980739    | 0.83964     | 0.667808    | 0.617315    | 0.497237    |
| 15120        | 0.980402    | 0.838965    | 0.666987    | 0.616437    | 0.49628     |
| 16330        | 0.932936    | 0.755218    | 0.569168    | 0.513001    | 0.386123    |
| 16340        | 0.932504    | 0.754516    | 0.568378    | 0.512176    | 0.385267    |
| 16350        | 0.932072    | 0.753813    | 0.567589    | 0.511351    | 0.384412    |
| 16360        | 0.931639    | 0.753111    | 0.5668      | 0.510527    | 0.383558    |
| 16370        | 0.931205    | 0.752409    | 0.566012    | 0.509703    | 0.382705    |
| 16380        | 0.930771    | 0.751707    | 0.565224    | 0.50888     | 0.381853    |
| 16950        | 0.905353    | 0.71166     | 0.521027    | 0.462983    | 0.334986    |
| 16960        | 0.904896    | 0.710958    | 0.520265    | 0.462197    | 0.334194    |
| 16970        | 0.90444     | 0.710256    | 0.519504    | 0.461411    | 0.333404    |
| 16980        | 0.903983    | 0.709555    | 0.518743    | 0.460626    | 0.332615    |
| 16990        | 0.903525    | 0.708853    | 0.517983    | 0.459842    | 0.331827    |
| 17000        | 0.903068    | 0.708152    | 0.517223    | 0.459058    | 0.33104     |
| 17010        | 0.90261     | 0.707451    | 0.516464    | 0.458275    | 0.330254    |
| 17020        | 0.902152    | 0.706749    | 0.515705    | 0.457492    | 0.329469    |
| 17030        | 0.901693    | 0.706048    | 0.514947    | 0.456711    | 0.328685    |
| 17040        | 0.901234    | 0.705347    | 0.514189    | 0.45593     | 0.327903    |
| 18650        | 0.824691    | 0.594671    | 0.399646    | 0.339945    | 0.216758    |
| 18660        | 0.824205    | 0.594003    | 0.398985    | 0.339288    | 0.216161    |
| 18670        | 0.82372     | 0.593336    | 0.398324    | 0.338633    | 0.215566    |
| 18680        | 0.823234    | 0.592669    | 0.397665    | 0.337978    | 0.214971    |
| 19970        | 0.760364    | 0.509532    | 0.31829     | 0.260485    | 0.147739    |
| 19980        | 0.759878    | 0.508912    | 0.31772     | 0.259938    | 0.147288    |
| 19990        | 0.759391    | 0.508293    | 0.317151    | 0.259392    | 0.146839    |
| 20000        | 0.758905    | 0.507674    | 0.316582    | 0.258847    | 0.146391    |
|              |             |             |             |             |             |

TABLE 3 (ESTIMATION OF RELIABILITY BETWEEN THE INTERVAL 15000-20000)

#### 8. STUDY ON VERIFICATION COEFFICIENT AND ACCURACY

We have now estimated reliability and studied the variations considering 3P-Weibull distribution as an appropriate fit for the failure data. In this section we will check for the accuracy of the method proposed using Miner's verification coefficient. In the method we used above we assumed that 3P-Weibull distribution would be the most apt fit the failure data presented. This is mostly due to the reason that, 3P-Weibull distribution has the most versatile characteristics. It is necessary to understand the nature of 3P-Weibull distribution and how it best relates to failure data.

The characteristic exhibited by the 3P-Weibull distribution cooperates with the nature failure data but we need to check if the distribution also provides accurate results. This is done by

verifying the results. Considering the results we obtained from the previous section, we will determine the Miner's verification coefficient using the following equation.

$$\frac{n_1}{N_{c1p}} + \frac{n_{2p}}{N_{c2p}} = \beta, \text{ where } \beta \text{ is the verification coefficient}$$
(17)

The value of  $\beta$  is found at each stage i.e. for every single failure data in the table. This value of  $\beta$  provides the verity. Several researches and tests have been performed to determine the range of  $\beta$  [19]. Several tests proved several conclusions.

Considerable test data has been generated in an attempt to verify Miner's Rule. Most test cases use a two step load history. The results of Miner's original tests showed that the damage criterion X corresponding to failure ranged from 0.61 to 1.45. Other researchers have shown variations as large as 0.18 to 23.0, with most results tending to fall between 0.5 and 2.0. In most cases, the average value is close to Miner's proposed value of 1.0.

From the above we can conclude that, it is best if the value of  $\beta$  is close to unity then the values determined are acceptable. The step wise procedure involved in determining the value of  $\beta$  is as follows

- 1. The failure data generated in the previous section and the results obtained from simulation are carried over for determining the value of  $\beta$ .
- 2. Now we already have the failure data and the corresponding reliability's at each stage.
- 3. The table (1) shows the different values assumed in the simulation model
- 4. Now calculate  $N_{c1p} \& N_{c2p}$  corresponding to each  $n_{2p'}$ . Since we know that  $N_{c1p} \& N_{c2p}$  are Log-normally distributed, using the equation

$$p = 1 - \varphi(\frac{\lg N_{c1} - \mu_1}{\sigma_1})$$
 &  $p = 1 - \varphi(\frac{\lg N_{c2} - \mu_2}{\sigma_2})$ 

and substituting calculated values of reliability from table (2) for p and assumed values of mean and standard deviations for  $N_{c1} \& N_{c2}$  from table (1), we can determine the corresponding values of  $N_{c1p} \& N_{c2p}$ .

- 5. Now using the equation (17) we can determine the verification coefficient  $\beta$ .
- 6. Now corresponding to each  $N_{c1p} \& N_{c2p}$  we can also calculate the residual life  $n_{2pm}$  using the equation

$$n_{2pm} = N_{c2p} \left(1 - \left(\frac{n_1}{N_{c1p}}\right)\right) \tag{18}$$

Now we have calculated the verification coefficient for the five different sets of failure data corresponding to five different stress values. In order to compare the verification coefficients between the different sets of failure data, we extend table (3) where we had found the reliability for a specific interval 15000-20000 cycles for the different set of Weibull parameters which

represent the stress levels. Steps 4 - 6 of verification calculation procedure is repeated for these values of reliability as shown in table (4). Figure (2) shows the different ranges of verification coefficients corresponding to different stress levels.

Table (4) shows the variation in reliability and the ranges, interval of verification for low values of shape parameter (or low values of stress in stage II). We will further analyze the reliability variations and variations in verification coefficients for higher values of shape parameter (or higher values of stress in stage II)

NOTE: All the values and parameters corresponding to the stress at Stage I remain unaltered at all times.

The interval of the low shape parameters (1.0 and 2.0) was estimated. Now by altering the assumed values (3 parameters of Weilbull distribution) corresponding to the new values assumed for  $N_{c2}$ 's while generating random Weibull data, we can generate failure data with higher values for shape parameter as shown in table (6). The table (5) below shows the different assumptions made while generating failure data for higher values of shape parameter.

|                                                                                | C = 1.3085           | C = 1.443              | C =          | 1.5658       |           | C = 1.6131      |           | C = 1.842 | 16      |          |
|--------------------------------------------------------------------------------|----------------------|------------------------|--------------|--------------|-----------|-----------------|-----------|-----------|---------|----------|
| F.T                                                                            | Reliabi V.C (β) Resd | Life Reliabi V.C (β) R | esd Life Rel | iabi V.C (β) | Resd Life | ReliabilV.C (β) | Resd Life | Reliabil  | V.C (β) | Resd Lif |
| 15070                                                                          | 0.9821 0.8402 2613   | 32.8 0.8423 0.9071     | 19963 0.6    | 5711 0.8416  | 25854     | 0.6208 0.8628   | 23589     | 0.5011    | 0.8686  | 23031    |
| 15080                                                                          | 0.9817 0.8403 2613   | 0.8417 0.9073          | 19963 0.6    | 5703 0.8418  | 25855     | 0.62 0.863      | 23590     | 0.5001    | 0.8687  | 23032    |
| 15090                                                                          | 0.9814 0.8404 2613   | 35.5 0.841 0.9075      | 19963 0.6    | 695 0.8419   | 25855     | 0.6191 0.8631   | 23591     | 0.4992    | 0.8689  | 23033    |
| 15100                                                                          | 0.9811 0.8406 2613   | 36.9 0.8403 0.9077     | 19963 0.6    | 686 0.8421   | 25856     | 0.6182 0.8633   | 23591     | 0.4982    | 0.869   | 23033    |
| 15110                                                                          | 0.9807 0.8407 2613   | 0.8396 0.9079          | 19964 0.6    | 678 0.8422   | 25857     | 0.6173 0.8634   | 23592     | 0.4972    | 0.8692  | 23034    |
| 15120                                                                          | 0.9804 0.8408 2613   | 39.5 0.839 0.908       | 19964 0      | .667 0.8423  | 25858     | 0.6164 0.8636   | 23593     | 0.4963    | 0.8693  | 23035    |
| 16330                                                                          | 0.9329 0.8571 2624   | 44.4 0.7552 0.9304     | 19997 0.5    | 692 0.8592   | 25947     | 0.513 0.8821    | 23671     | 0.3861    | 0.8881  | 23130    |
| 16340                                                                          | 0.9325 0.8572 26     | 0.7545 0.9306          | 19997 0.5    | 684 0.8593   | 25948     | 0.5122 0.8822   | 23671     | 0.3853    | 0.8883  | 23130    |
| 16350                                                                          | 0.9321 0.8574 2624   | 45.6 0.7538 0.9308     | 19997 0.5    | 676 0.8594   | 25948     | 0.5114 0.8824   | 23672     | 0.3844    | 0.8884  | 23131    |
| 16360                                                                          | 0.9316 0.8575 2624   | 46.2 0.7531 0.931      | 19997 0.5    | 668 0.8596   | 25949     | 0.5105 0.8826   | 23673     | 0.3836    | 0.8886  | 23132    |
| 16370                                                                          | 0.9312 0.8576 2624   | 46.8 0.7524 0.9312     | 19998 0      | .566 0.8597  | 25950     | 0.5097 0.8827   | 23673     | 0.3827    | 0.8887  | 23133    |
| 16380                                                                          | 0.9308 0.8578 2624   | 47.4 0.7517 0.9314     | 19998 0.5    | 652 0.8598   | 25951     | 0.5089 0.8829   | 23674     | 0.3819    | 0.8889  | 23133    |
| 16950                                                                          | 0.9054 0.8656 2627   | 78.9 0.7117 0.9419     | 20011 0      | .521 0.8678  | 25989     | 0.463 0.8916    | 23708     | 0.335     | 0.8977  | 23176    |
| 16960                                                                          | 0.9049 0.8658 2627   | 79.4 0.711 0.9421      | 20011 0.5    | 203 0.8679   | 25990     | 0.4622 0.8917   | 23709     | 0.3342    | 0.8979  | 23177    |
| 16970                                                                          | 0.9044 0.8659 2627   | 79.9 0.7103 0.9423     | 20012 0.5    | 5195 0.8681  | 25991     | 0.4614 0.8919   | 23709     | 0.3334    | 0.898   | 23177    |
| 16980                                                                          | 0.904 0.866 2628     | 0.7096 0.9425          | 20012 0.5    | 5187 0.8682  | 25991     | 0.4606 0.892    | 23710     | 0.3326    | 0.8982  | 23178    |
| 16990                                                                          | 0.9035 0.8662 2628   | 0.7089 0.9427          | 20012 0      | .518 0.8683  | 25992     | 0.4598 0.8922   | 23710     | 0.3318    | 0.8983  | 23179    |
| 17000                                                                          | 0.9031 0.8663 2628   | 81.4 0.7082 0.9429     | 20012 0.5    | 5172 0.8685  | 25993     | 0.4591 0.8923   | 23711     | 0.331     | 0.8985  | 23180    |
| 17010                                                                          | 0.9026 0.8664 2628   | 0.7075 0.9431          | 20013 0.5    | 5165 0.8686  | 25993     | 0.4583 0.8925   | 23712     | 0.3303    | 0.8986  | 23180    |
| 17020                                                                          | 0.9022 0.8666 2628   | 82.3 0.7067 0.9432     | 20013 0.5    | 5157 0.8687  | 25994     | 0.4575 0.8927   | 23712     | 0.3295    | 0.8988  | 23181    |
| 17030                                                                          | 0.9017 0.8667 2628   | 0.706 0.9434           | 20013 0.5    | 5149 0.8689  | 25995     | 0.4567 0.8928   | 23713     | 0.3287    | 0.8989  | 23182    |
| 17040                                                                          | 0.9012 0.8669 2628   | 33.3 0.7053 0.9436     | 20013 0.5    | 0.869        | 25995     | 0.4559 0.893    | 23713     | 0.3279    | 0.8991  | 23183    |
| 18650                                                                          | 0.8247 0.8892 2634   | 49.5 0.5947 0.9735     | 20046 0.3    | 8996 0.8914  | 26097     | 0.3399 0.9176   | 23803     | 0.2168    | 0.924   | 23297    |
| 18660                                                                          | 0.8242 0.8894 2634   | 49.9 0.594 0.9737      | 20046 0      | .399 0.8915  | 26097     | 0.3393 0.9177   | 23804     | 0.2162    | 0.9241  | 23298    |
| 18670                                                                          | 0.8237 0.8895 2635   | 50.2 0.5933 0.9739     | 20046 0.3    | 983 0.8917   | 26098     | 0.3386 0.9179   | 23804     | 0.2156    | 0.9243  | 23299    |
| 18680                                                                          | 0.8232 0.8897 2635   | 50.6 0.5927 0.9741     | 20047 0.3    | 8977 0.8918  | 26098     | 0.338 0.918     | 23805     | 0.215     | 0.9244  | 23299    |
| 19970                                                                          | 0.7604 0.9077 2639   | 91.7 0.5095 0.9981     | 20070 0.3    | 3183 0.9097  | 26173     | 0.2605 0.9377   | 23871     | 0.1477    | 0.9442  | 23387    |
| 19980                                                                          | 0.7599 0.9078 26     | 0.5089 0.9983          | 20070 0.3    | 3177 0.9099  | 26174     | 0.2599 0.9379   | 23872     | 0.1473    | 0.9444  | 23388    |
| 19990                                                                          | 0.7594 0.908 2639    | 92.3 0.5083 0.9985     | 20070 0.3    | 8172 0.91    | 26174     | 0.2594 0.938    | 23872     | 0.1468    | 0.9446  | 23388    |
| 20000                                                                          | 0.7589 0.9081 2639   | 92.6 0.5077 0.9987     | 20070 0.3    | 8166 0.9102  | 26175     | 0.2588 0.9382   | 23873     | 0.1464    | 0.9447  | 23389    |
| TABLE 4 (ESTIMATION OF VERIFICATION COEFFICIENT BETWEEN 15000-20000 CYCLE NO.) |                      |                        |              |              |           |                 |           |           |         | (        |



# ASSUMPTIONS MADE FOR HIGH LEVELS OF STRESS

| DEFINITION                                    | NOTATION        | ASSUMED VALUE                     |
|-----------------------------------------------|-----------------|-----------------------------------|
| Constant Amplitude Fatigue<br>Life in Stage I | N <sub>c1</sub> | $\log N_{c1} \sim N(4.962, 0.03)$ |

| Different Constant Amplitude  | $N_{c2}$ 's | $\log N_{c2} \sim N(4.0565, 0.0366)$  |
|-------------------------------|-------------|---------------------------------------|
| Fatigue Lives in Stage II     |             | $\log N_{c2} \sim N(4.0113, 0.0412)$  |
|                               |             | $\log N_{c2} \sim N(3.9965, 0.0261)$  |
|                               |             | $\log N_{c2} \sim N(3.939, .0286)$    |
|                               |             | $\log N_{c2} \sim N(3.8043, 0.03113)$ |
|                               |             |                                       |
|                               |             |                                       |
|                               |             |                                       |
| No. of Loading cycles applied | $n_1$       | $n_1 = 80000$                         |
| in Stage I                    | -           | -                                     |
|                               |             |                                       |
| Shape parameter               | С           | C=3.6417, 4.272, 4.368,               |
|                               |             | 4.6607, 5.3276                        |
|                               |             |                                       |
|                               |             |                                       |

# TABLE 5

| C = 3.6417  |             | C = 4 | .272    |             |        | C = 4.368    |             |       | C = 4.6607  |             |   | C = 5.3276  |             |
|-------------|-------------|-------|---------|-------------|--------|--------------|-------------|-------|-------------|-------------|---|-------------|-------------|
| Failure tin | Reliability | Failu | ure tin | Reliability | /      | Failure tin  | Reliability |       | Failure tin | Reliability | , | Failure Tir | Reliability |
| 3839.093    | 0.988624    | 36    | 66.13   | 0.993085    |        | 3390.577     | 0.996966    |       | 3167.27     | 0.99599     |   | 3142.526    | 0.994577    |
| 3848.268    | 0.987994    | 374   | 6.971   | 0.98824     |        | 3702.377     | 0.975258    |       | 3431.578    | 0.975149    |   | 3341.054    | 0.977312    |
| 3879.978    | 0.985623    | 388   | 3.802   | 0.97467     |        | 3703.273     | 0.97514     |       | 3488.247    | 0.966128    |   | 3367.688    | 0.973253    |
| 4437.323    | 0.871826    | 39    | 77.59   | 0.960185    |        | 3770.748     | 0.964994    |       | 3719.239    | 0.901782    |   | 3678.32     | 0.87019     |
| 4439.588    | 0.871009    | 425   | 6.426   | 0.881624    |        | 3978.982     | 0.914015    |       | 3757.225    | 0.885939    |   | 3714.405    | 0.849297    |
| 4457.795    | 0.864324    | 426   | 5.878   | 0.87784     |        | 4043.134     | 0.891005    |       | 3775.262    | 0.877817    |   | 3717.435    | 0.84744     |
| 4855.752    | 0.667267    | 432   | 9.576   | 0.850197    |        | 4095.428     | 0.869325    |       | 3914.679    | 0.801269    |   | 3786.116    | 0.800997    |
| 4857.089    | 0.66646     | 436   | 6.849   | 0.832259    |        | 4275.815     | 0.773125    |       | 3921.627    | 0.796799    |   | 3791.336    | 0.797121    |
| 4869.087    | 0.659178    | 437   | 1.611   | 0.829873    |        | 4309.157     | 0.751685    |       | 3924.766    | 0.79476     |   | 3817.507    | 0.776943    |
| 4884.404    | 0.649795    | 454   | 9.675   | 0.725407    |        | 4319.364     | 0.744901    |       | 3951.677    | 0.776752    |   | 3876        | 0.727412    |
| 5036.707    | 0.55222     | 455   | 0.404   | 0.724921    |        | 4462.366     | 0.63989     |       | 3968.883    | 0.764753    |   | 3987.602    | 0.617183    |
| 5050.598    | 0.543035    | 464   | 8.197   | 0.655792    |        | 4471.817     | 0.632365    |       | 4089.186    | 0.670789    |   | 3994.978    | 0.609267    |
| 5075.201    | 0.5267      | 466   | 8.937   | 0.640229    |        | 4615.792     | 0.511587    |       | 4105.15     | 0.657101    |   | 4013.994    | 0.588557    |
| 5076.262    | 0.525993    | 467   | 8.296   | 0.633114    |        | 4674.678     | 0.460278    |       | 4115.016    | 0.648513    |   | 4091.895    | 0.500147    |
| 5087.325    | 0.518623    | 467   | 8.567   | 0.632907    |        | 4677.997     | 0.45738     |       | 4125.278    | 0.639483    |   | 4093.876    | 0.497844    |
| 5327.033    | 0.360244    | 481   | 1.854   | 0.526659    |        | 4687.082     | 0.449448    |       | 4267.714    | 0.505972    |   | 4108.952    | 0.48027     |
| 5327.426    | 0.359993    | 484   | 4.099   | 0.50002     |        | 4847.764     | 0.312811    |       | 4279.788    | 0.494185    |   | 4110.55     | 0.478403    |
| 5327.655    | 0.359847    | 485   | 6.919   | 0.48938     |        | 4857.761     | 0.304745    |       | 4291.356    | 0.482862    |   | 4218.742    | 0.352355    |
| 5335.771    | 0.354683    | 492   | 6.385   | 0.431627    |        | 4869.598     | 0.295291    |       | 4316.133    | 0.45855     |   | 4222.792    | 0.347741    |
| 5342.328    | 0.350526    | 498   | 6.618   | 0.382059    |        | 4947.931     | 0.235763    |       | 4466.717    | 0.313852    |   | 4289.854    | 0.273886    |
| 5498.619    | 0.25689     | 499   | 2.847   | 0.376994    |        | 4963.896     | 0.224362    |       | 4468.062    | 0.312619    |   | 4305.295    | 0.257745    |
| 5570.509    | 0.21818     | 516   | 8.106   | 0.243416    |        | 4972.008     | 0.218673    |       | 4595.113    | 0.204952    |   | 4320.462    | 0.242275    |
| 5572.933    | 0.216931    | 516   | 8.187   | 0.24336     |        | 4973.28      | 0.217788    |       | 4603.08     | 0.198894    |   | 4362.529    | 0.201601    |
| 5596.391    | 0.205035    | 517   | 0.818   | 0.241531    |        | 5090.445     | 0.144367    |       | 4609.917    | 0.193768    |   | 4372.257    | 0.192704    |
| 5806.276    | 0.115487    | 536   | 2.321   | 0.127667    |        | 5142.28      | 0.117369    |       | 4611.5      | 0.192591    |   | 4386.162    | 0.180341    |
| 5844.703    | 0.102484    | 538   | 9.441   | 0.114883    |        | 5161.464     | 0.108258    |       | 4758.293    | 0.100833    |   | 4400.29     | 0.16822     |
| 6194.303    | 0.027426    | 57    | 53.87   | 0.017872    |        | 5181.544     | 0.09923     |       | 4794.838    | 0.083511    |   | 4523.409    | 0.082775    |
| 6506.363    | 0.005649    | 577   | 8.291   | 0.015259    |        | 5795.514     | 0.001486    |       | 5225.298    | 0.003153    |   | 4895.833    | 0.002164    |
|             |             |       |         | TARI F      | 6 13 6 | < C < 5 3) R | FUARILITY   | FSTIM | ΔΤΙΟΝ       |             |   |             |             |

Table (7) shows the different values of reliability estimated at each stage for high values of stress. Table (8) shows the variations in verification coefficient and different values of reliability estimated for the failure data (high values of shape parameter)

|         | C = 3.       | .6417   |            | C = 4     | .272    |           | C = 4   | .368     |          | C = 4     | .6607   |           | C = 5   | .3276   |          |
|---------|--------------|---------|------------|-----------|---------|-----------|---------|----------|----------|-----------|---------|-----------|---------|---------|----------|
| Failure | tin Reliabil | V.C (β) | Resd life  | e Reliabi | V.C (β) | Resd life | Reliabi | V.C (β)  | Resd lif | e Reliabi | V.C (β) | Resd Life | Reliabi | V.C (β) | Resd Lif |
| 4000    | 0.9736       | 0.8733  | 6019.6     | 0.956     | 0.8901  | 5639      | 0.9069  | 0.9393   | 4764.4   | 0.7421    | 0.9762  | 4267.9    | 0.6038  | 1.0983  | 3177.9   |
| 4005    | 0.973        | 0.8736  | 6020       | 0.955     | 0.8904  | 5639.5    | 0.9051  | 0.9396   | 4764.7   | 0.7384    | 0.9766  | 4268.2    | 0.5984  | 1.0988  | 3178.1   |
| 4065    | 0.9647       | 0.8771  | 6024.6     | 0.9419    | 0.8942  | 5644.6    | 0.8823  | 0.9442   | 4767.6   | 0.691     | 0.9817  | 4271.3    | 0.5312  | 1.1056  | 3181.2   |
| 4160    | 0.9482       | 0.8827  | 6031.6     | 0.9157    | 0.9001  | 5652.6    | 0.8388  | 0.9514   | 4772.3   | 0.6082    | 0.9897  | 4276.4    | 0.4204  | 1.1163  | 3186.1   |
| 4240    | 0.9308       | 0.8874  | 6037.4     | 0.888     | 0.905   | 5659.3    | 0.7949  | 0.9574   | 4776.2   | 0.5329    | 0.9964  | 4280.7    | 0.3283  | 1.1253  | 3190.5   |
| 4260    | 0.9259       | 0.8885  | 6038.8     | 0.8802    | 0.9063  | 5660.9    | 0.7829  | 0.9589   | 4777.2   | 0.5135    | 0.9981  | 4281.8    | 0.3061  | 1.1275  | 3191.6   |
| 4265    | 0.9246       | 0.8888  | 6039.1     | 0.8782    | 0.9066  | 5661.3    | 0.7798  | 0.9593   | 4777.4   | 0.5086    | 0.9985  | 4282.1    | 0.3006  | 1.1281  | 3191.9   |
| 4370    | 0.8946       | 0.895   | 6046.4     | 0.8307    | 0.9131  | 5670      | 0.7098  | 0.9673   | 4782.6   | 0.4058    | 1.0073  | 4287.9    | 0.1948  | 1.1398  | 3197.9   |
| 4375    | 0.893        | 0.8953  | 6046.7     | 0.8282    | 0.9134  | 5670.4    | 0.7062  | 0.9676   | 4782.9   | 0.4009    | 1.0077  | 4288.2    | 0.1902  | 1.1403  | 3198.2   |
| 4380    | 0.8914       | 0.8956  | 6047.1     | 0.8256    | 0.9137  | 5670.8    | 0.7026  | 0.968    | 4783.1   | 0.3961    | 1.0081  | 4288.5    | 0.1858  | 1.1409  | 3198.5   |
| 4450    | 0.8672       | 0.8997  | 6051.8     | 0.7875    | 0.9181  | 5676.6    | 0.6496  | 0.9733   | 4786.6   | 0.3293    | 1.014   | 4292.5    | 0.1293  | 1.1486  | 3202.7   |
| 4455    | 0.8654       | 0.9     | 6052.2     | 0.7846    | 0.9184  | 5677      | 0.6457  | 0.9737   | 4786.9   | 0.3247    | 1.0144  | 4292.8    | 0.1257  | 1.1492  | 3203.1   |
| 4465    | 0.8616       | 0.9006  | 6052.8     | 0.7787    | 0.919   | 5677.8    | 0.6378  | 0.9744   | 4787.4   | 0.3154    | 1.0152  | 4293.4    | 0.1187  | 1.1503  | 3203.7   |
| 4585    | 0.8117       | 0.9077  | 6060.8     | 0.7013    | 0.9264  | 5687.7    | 0.5382  | 0.9835   | 4793.5   | 0.2128    | 1.0252  | 4300.5    | 0.0537  | 1.1635  | 3211.3   |
| 4590    | 0.8094       | 0.908   | 6061.1     | 0.6978    | 0.9267  | 5688.2    | 0.5339  | 0.9838   | 4793.7   | 0.2089    | 1.0256  | 4300.8    | 0.0517  | 1.1641  | 3211.7   |
| 4595    | 0.8071       | 0.9083  | 6061.5     | 0.6943    | 0.927   | 5688.6    | 0.5296  | 0.9842   | 4794     | 0.205     | 1.0261  | 4301.1    | 0.0498  | 1.1646  | 3212     |
| 4600    | 0.8048       | 0.9086  | 6061.8     | 0.6908    | 0.9273  | 5689      | 0.5252  | 0.9846   | 4794.2   | 0.2012    | 1.0265  | 4301.4    | 0.0479  | 1.1652  | 3212.3   |
| 4760    | 0.7229       | 0.918   | 6072.3     | 0.5689    | 0.9372  | 5702.5    | 0.3862  | 0.9966   | 4802.6   | 0.1       | 1.0397  | 4311.5    | 0.0112  | 1.1826  | 3223.4   |
| 4765    | 0.7201       | 0.9183  | 6072.6     | 0.5649    | 0.9375  | 5702.9    | 0.3819  | 0.997    | 4802.9   | 0.0975    | 1.0401  | 4311.8    | 0.0106  | 1.1832  | 3223.8   |
| 4775    | 0.7145       | 0.9189  | 6073.3     | 0.5568    | 0.9381  | 5703.8    | 0.3734  | 0.9977   | 4803.4   | 0.0926    | 1.041   | 4312.4    | 0.0095  | 1.1843  | 3224.5   |
| 4780    | 0.7117       | 0.9192  | 6073.6     | 0.5527    | 0.9384  | 5704.2    | 0.3692  | 0.9981   | 4803.7   | 0.0903    | 1.0414  | 4312.8    | 0.009   | 1.1848  | 3224.9   |
| 4880    | 0.6525       | 0.925   | 6080.1     | 0.4702    | 0.9446  | 5712.8    | 0.2871  | 1.0056   | 4809.1   | 0.0513    | 1.0496  | 4319.4    | 0.0027  | 1.1956  | 3232.4   |
| 4885    | 0.6494       | 0.9253  | 6080.5     | 0.466     | 0.9449  | 5713.2    | 0.2832  | 1.006    | 4809.4   | 0.0498    | 1.05    | 4319.7    | 0.0025  | 1.1962  | 3232.8   |
| 4890    | 0.6463       | 0.9256  | 6080.8     | 0.4619    | 0.9452  | 5713.7    | 0.2793  | 1.0064   | 4809.6   | 0.0483    | 1.0504  | 4320.1    | 0.0023  | 1.1967  | 3233.2   |
| 4895    | 0.6433       | 0.9259  | 6081.1     | 0.4577    | 0.9455  | 5714.1    | 0.2754  | 1.0067   | 4809.9   | 0.0468    | 1.0509  | 4320.4    | 0.0022  | 1.1972  | 3233.6   |
| 4950    | 0.6086       | 0.9292  | 6084.7     | 0.4121    | 0.9488  | 5718.9    | 0.2343  | 1.0109   | 4812.9   | 0.0326    | 1.0554  | 4324.2    | 0.001   | 1.2031  | 3237.9   |
| 4955    | 0.6054       | 0.9295  | 6085.1     | 0.408     | 0.9491  | 5719.4    | 0.2307  | 1.0112   | 4813.2   | 0.0315    | 1.0558  | 4324.5    | 0.0009  | 1.2037  | 3238.3   |
| 4990    | 0.5828       | 0.9315  | 6087.3     | 0.3793    | 0.9513  | 5722.5    | 0.2063  | 1.0138   | 4815.2   | 0.0246    | 1.0587  | 4326.9    | 0.0005  | 1.2074  | 3241.2   |
| 4995    | 0.5796       | 0.9318  | 6087.7     | 0.3752    | 0.9516  | 5722.9    | 0.2029  | 1.0142   | 4815.5   | 0.0237    | 1.0591  | 4327.3    | 0.0005  | 1.208   | 3241.6   |
| 5000    | 0.5763       | 0.9321  | 6088       | 0.3712    | 0.9519  | 5723.4    | 0.1996  | 1.0146   | 4815.8   | 0.0229    | 1.0595  | 4327.7    | 0.0005  | 1.2085  | 3242     |
|         |              | TA      | ABLE 7 (ES | STIMATIO  | N OF VE | RIFICATIO | N COEFF | ICIENT E | BETWEEN  | 4000-500  | 0 CYCLE | NO.)      |         |         |          |

#### 9. DISCUSSION & COMMENTS BASED ON RESULTS

In this section we will discuss the various results we obtained from the tables and graphs.

#### Discussion on variations for low values of shape parameter (low levels of stress in stage II)

Figure (3) & (4) are based on the values from the table (7). As the title suggests the graph shows the variation in verification coefficient and reliability for low values of shape parameter (1.0 - 2.0) respectively between the cycle number intervals 15000-20000.





Clearly from the graph we can say that when c = 1.443 the values of the verification coefficients are closest to unity. However the range (difference between maximum and minimum value) of verification coefficient is also found to be the largest for this value of shape parameter. Higher the range of the verification coefficient, higher is the percentage of error (Range of the verification coefficient is approximately equal to 0.1, which indicates large variations). The range for all the other values of shape parameter is almost equal (range of VC is approximately equal to 0.07). A smaller value of range indicates more consistency in accuracy. This indicates that the slope is more when c = 1.443 than for other values of c.

As for the variation in reliability, we can see that for the lowest value of shape parameter (c = 1.3085), the values of reliability are maximum. The different values of the shape parameters are representations of different stress levels in stage II of loading. We can conclude that as stress level in stage II increases the values of reliability decreases. Also it is clearly seen that the reliability range increases with increase in shape parameter which makes the curves

steeper for higher values of shape parameter. The table (8) below shows the reliability ranges and the verification coefficient ranges for different values of c. This indicates, for higher values of stresses in stage II, the rate of decrease in reliability increases with respect to cycle number (faster failure rate).

| SHAPE PARAMETER | RELIABILITY RANGES  | VERIFICATION       |  |  |  |  |
|-----------------|---------------------|--------------------|--|--|--|--|
|                 |                     | COEFFICIENT KANGES |  |  |  |  |
| C = 1.3085      | 0.984358 - 0.7589   | 0.8390 - 0.9081    |  |  |  |  |
| C = 1.443       | 0.847037 - 0.507674 | 0.9071 - 0.9987    |  |  |  |  |
| C = 1.5658      | 0.67685 - 0.316582  | 0.8416 - 0.9102    |  |  |  |  |
| C = 1.6131      | 0.62699 - 0.258847  | 0.8628 - 0.9382    |  |  |  |  |
| C = 1.8416      | 0.507812 - 0.146391 | 0.8686 - 0.9447    |  |  |  |  |

#### TABLE 8

# Discussion on variations for high values of shape parameter (higher values of stress in stage II)

Previously we studied the variations in reliability and verification coefficient for low stress values in stage II. In this section we will understand the variations for higher values of stress in stage II (high values of shape parameter, 3.6 - 5.4) between the cycle number intervals 4000-5000

From figure (4), we can say that higher the values of the shape parameter, the value of the verification coefficient is high. Here, when c = 4.6607 & 4.368, the values of verification coefficients are consistently close to unity and also the range is narrow for these values. Also for lower values of shape parameter the range of the verification coefficient becomes narrow. The narrower the ranges of V.C are, the more consistent the values are. This can also be observed even in the previous analysis for values of shape parameter between 1.0 and 2.0. Hence we can conclude that, lower the values of shape parameter, the verification coefficient becomes more consistent.

From figure (3), we can interpret the reliability variation increases with increase in shape parameter. Similar to the previous case where we observed the increase in rate of decrease in reliability for higher values of c, even in this case for higher values of the shape parameter, the reliability curves become steeper, making the reliability ranges wider. Hence even for higher values of the shape parameter, the rate of decrease in reliability increases. The table (9) below shows the ranges of reliability & verification coefficient for different values of shape parameter (higher stress values in stage II).

| SHAPE PARAMETER | RELIABILITY RANGES  | VERIFICATION<br>COEFFICIENT RANGES |
|-----------------|---------------------|------------------------------------|
| C=3.6417        | 0.973574 - 0.576315 | 0.8733 - 0.9321                    |
| C=4.272         | 0.955966 - 0.371194 | 0.8901 – 0.9519                    |
| C=4.368         | 0.906898 - 0.19603  | 0.9393 - 1.0146                    |
| C=4.6607        | 0.742105 - 0.022851 | 0.9762 - 1.0595                    |
| C=5.3276        | 0.603838 - 0.000453 | 1.0983 - 1.2085                    |

#### TABLE 9

Comparing table (8) & table (9) or figures (1) & (3) of low & high shape values respectively, we can say that the reliability ranges are wider in later. From which we can conclude that failure rate increases for higher values of shape parameter. Also in table (9) for high shape values, there is a sudden decrease in reliability when the shape parameter increased from 4.368 to 4.6607, their corresponding stress levels give an idea on the strength of the material tested. A lot can be understood about the nature of the material from the above analysis.

Thus we have successfully presented a model to derive the reliability, verification coefficient and residual life and they were all analyzed at different levels of stresses. In this study we have analyzed reliability considering the three-parameter Weibull distribution. However, we can further study reliability fitting data to other distributions which can facilitate a fatigue failure rate and compare the best fit distribution with the help of verification coefficient ranges.

#### REFERENCES

- 1. Failure of materials in mechanical design: analysis, prediction, prevention by Jack A. Collins.
- 2. Fundamentals of metal fatigue analysis, Julie A. Bannantine 1989.
- 3. Ni Kan. Two-dimensional probabilistic Miner's rule and its application in structural fatigue reliability. PhD dissertation, Beijing University of aeronautics and astronautics, 1994 (in Chinese).
- 4. Kan Ni and Z. Gao, Two-dimensional probabilistic Miner's rule in fatigue reliability. Chin J Solid Mech **17** 4 (1996), pp. 365–371 (in Chinese).

- 5. T. Shimokawa and S. Tanaka, A statistical consideration of Miner's rule. Int J Fatigue 2 4 (1980), pp. 165–170.
- 6. S. Tanaka, M. Ichikawa and S. Akita, A probabilistic investigation of fatigue life and cumulative cycle ratio. Engineering Fracture Mechanism 20 3 (1984), pp. 501–513.
- 7. Introduction to reliability engineering by Elmer Eugene Lewis
- 8. Web reference <u>http://en.wikipedia.org/wiki/Tensile\_strength</u>.
- 9. Fatigue of materials by S. Suresh.
- 10. Ni Kan. Two-dimensional probabilistic Miner's rule and its application in structural fatigue reliability. PhD dissertation, Beijing University of aeronautics and astronautics, 1994 (in Chinese).
- 11. Kan Ni and Z. Gao, Two-dimensional probabilistic Miner's rule in fatigue reliability. Chin J Solid Mech **17** 4 (1996), pp. 365–371 (in Chinese).
- 12. C. Amzallag et al., Standardization of the rain-flow counting method for fatigue analysis. Int J Fatigue **16** 4 (1994), pp. 287–293.
- Ni Kan, Zhang Shengkun. Fatigue experiment verification of two-dimensional probabilistic Miner's rule, Fatigue 99. In: Proceedings of the Seventh International Fatigue Congress, Beijing, People's Republic of China, vol. 4/4, 8–12 June 1999. p. 2705–10.
- 14. Weibull distribution: A handbook, chapter 2 by Chapman and Hall.
- 15. Fatigue reliability analysis under two stage loading by Kan Ni and Shengkun Zhang, Reliability Engineering and Safety System Vol 68, issue 2, May 2000 Pg 153-158.
- 16. Lognormal distributions: theory and applications, chapter 1 by Edwin L. Crow, Kunio Shimizu.
- 17. The Weibull analysis handbook by Byran Dodson. Pg 19-39.
- 18. Reliability engineering handbook, volume 1 by Dimitri Kececioglu, Pg 271-282. Web reference, <u>http://www.weibull.com/hotwire/issue14/relbasics14.htm</u>
- Web reference, <u>http://www.engrasp.com/doc/etb/mod/fm1/miner/miner\_help.html</u>. A statistical consideration of Miner's rule, T. Shimokawa, S. Tanaka, Int. J Fatigue, Vol 2, issue 4.