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       ABSTRACT 

The effective life of a specimen is calculated as the time from when the specimen is in its 

operating conditions to the time of its failure and reliability indicates probability of survival of 

the specimen or product. In material science, this effective life is represented as the number of 

loading cycles until the failure of the specimen. Life of any product or specimen is inversely 

proportional to the load (stress or strain) applied on it. Practically, external loading is mostly 

fluctuating and various levels of loads are applied on the same specimen causing the specimen to 

fail over time and this is referred to as fatigue failure under variable amplitude loading. 

Researches in the past have even shown that life prediction under variable amplitude loading 

cannot be fit to any conventional method. Besides the constraints faced by modeling under 

variable amplitude loading, it is important to derive a method which can predict and analyze 

reliability variations under various conditions. 

In this study we have combined reliability prediction methods from past researches and 

presented a method to predict the fatigue reliability of a specimen under two-stage loading 

conditions with the help of failure data under constant amplitude loading, two dimensional 

probabilistic Miner’s rule and Weibull analysis. Corresponding reliability values of the specimen 

at different stages are calculated. A significant relationship between reliability of the specimen 

and the change in stress level is derived with the help of test data results from simulation. The 

consistency of the obtained reliability values is examined by further calculating the Miner’s 

verification coefficient and the variation in consistency is also studied. 

   Thesis Advisor 
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1. INTRODUCTION 

Understanding, designing and determining the life of a product or specimen is very vital in any 

field. The mechanical life of a specimen or product has a diversified definition [1] but in 

materials science, it is most widely recognized as the number of loading cycles until the product 

or the specimen fails. For many years now statisticians, scientists, engineers in the field of 

mechanical and reliability have been consistently working in the field of life cycle engineering, 

reliability engineering, and fatigue analysis. The research works conducted in all these domains 

aid in deriving an efficient way to determine the reliability or life of a specimen or product. 

Practically, life of any product or specimen deteriorates as time progresses. Life of a product in 

most cases is inversely proportionate to the load applied on it i.e. if the value of load applied on 

the product increases linearly then the remaining time of survival decreases. The changes in 

properties resulting from the application of cyclic loads are referred to as fatigue of materials. In 

simpler terms fatigue is understood as damage and failure of materials under cyclic loads. In this 

report fatigue is defined as a term which ‘applies to changes in properties which can occur in a 

material due to the repeated application of stress leading to a crack or a failure’. Fluctuations in 

externally applied stresses or strains result in mechanical fatigue. 

If the mean of the cyclic load applied is constant then the type of loading is referred to as 

constant amplitude loading.  If the mean of the cyclic load applied changes after a period of time 

then the type of loading is referred to as variable amplitude loading. The study of fatigue 

properties of material under variable amplitude loading is more complicated when compared to 

constant amplitude loading since the variation in properties becomes more unpredictable and 

there is no specific pattern. 

It is well known that the study of fatigue life of any product or specimen under variable 

amplitude loading requires the combination of several appropriate methods. In this paper, we 

will present a method to predict the fatigue reliability of a specimen under two-stage loading 

conditions [2] with the help of constant amplitude test data, two dimensional probabilistic 

Miner’s rule [3 and 4] and Weibull analysis. Corresponding reliability values of the specimen at 

different stages are calculated. A significant relationship between reliability of the specimen and 

the change in stress level is derived with the help of test data results from simulation. The 

consistency of the obtained reliability values is examined by further calculating the Miner’s 

verification coefficient [5 and 6] and the variation in consistency is also studied.  

Let us first discuss the important terms and properties associated with life cycles and reliability 

of a specimen from which the significance of determining the reliability or life can be understood 

in the first few sections and then delve into fatigue life analysis. 

LIFE OF A SPECIMEN AND RELIABILITY DEFINITION 
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All products and specimens manufactured have a specific life time. This life time represents the 

time until which the product or the specimen functions effectively. The life of a specimen can be 

represented in several appropriate ways respective to the type of specimen and load applied on it. 

The effective life of a specimen is calculated as the time from when the specimen is in its 

operating conditions to the time of its failure, hence it is a function of its operating conditions. 

The two important terms which need to be understood here are ‘operating conditions’ and 

‘failure’. In materials science, operating conditions are generally loading characteristics.  

Similarly, the other equally significant term ‘reliability’ indicates the probability of survival over 

a period of time. Reliability [7] indicates the life of a specimen or a product. Hence, it is very 

important that we understand how to derive the reliability of a specimen. Knowing the reliability 

of a component or a specimen, it is easy to predict the failure time of that component.  These two 

concepts form the base of our research ‘Fatigue Reliability Prediction Under Variable Two-Stage 

Loading Conditions’. 

1.1 LOAD, TYPES OF LOAD, FAILURE AND TYPES OF FAILURES 

Load, types of load, failure and types of failures are all interconnected. Materials science helps 

understanding of these terms very clearly. 

1.1.1 Load and types of loads 

In this paper, load is generally referred to as mechanical load which means forces 

acting upon a body from a mechanical source. There are different ways in which a 

load can be applied upon a body. If the load acts along the body of the specimen in 

such a way that it pulls both the ends of the specimen in the opposite direction, the 

type of loading is referred to as tensile loading. If the force load acts in such a way 

that it compresses the specimen, it is compressive loading. A type of load which 

causes object to twist due to torque is called torsion load. Any translational or 

external load which causes shear stress upon the body is called shear load. The 

following illustrative diagrams can be help in better understanding.  
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    Tensile load   Compressive load           Shear load 

Torsion load 

1.1.2 Failures, types of failures and important terms associated with failures. 

Failure of a component is the state of the component at which it has lost its potential 

to ever perform its designated operations. In mechanical terms failure is usually 

referred to as a fracture.  

There are many different kinds of mechanical failure, and they include overload, 

impact, fatigue, creep, rupture, stress relaxation, stress corrosion cracking, corrosion 

fatigue and so on. Each produces a different type of fracture surface, and other 

indicators near the fracture surface(s). The way the product is loaded, and the loading 

history are also important factors which determine the outcome. The design geometry 

is also of critical importance as it influences crack growth. 

From the above we understand that there are a lot of factors which influence the 

failure of a specimen or component. Failure is completely subjective. A failure can 

happen suddenly or gradually, mostly depending upon the material of the specimen. 

There are significant factors which are involved in both cases like tensile strength, 
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yield strength, neck formation, plastic deformation, elastic deformation and ultimate 

tensile strength [8]. 

Now with the understanding of above definitions and concepts we can further delve into the 

details of our research. In the next section, the objectives of the research will be clearly 

summarized. 

2. RESEARCH OBJECTIVES AND SUMMARY 

In this research study, we will present a method to estimate the reliability of a specimen under 

different two stage fatigue loading conditions and hence analyze the reliability variation with 

change in stress levels. Fatigue life [9] analysis of specimens has always been inherently 

challenging. The method involved in estimating the reliability of components under fatigue 

loading is not a conventional one. In this research we will propose an appropriate method to 

estimate the fatigue reliability under two-stage loading condition and then conduct variation 

analysis in reliability values under high and low values of stress. The corresponding variations in 

consistency are also studied with the help of Miner’s verification coefficient. 

Estimation of fatigue reliability in two-stage loading means the estimation of survival probability 

of the specimen after the first stage. Otherwise, it is referred to as the determination of number of 

cycles to failure in the second stage for a given percentage of reliability. Two-stage loading [2] 

refers to a loading condition experienced by a specimen subjected to two different level of stress 

at different times.  In this study, we have generated failure data using simulation and provided 

the method a numerical example and verified the method. Further, a study on the Reliability 

variation has been done by bringing the change in stress level by altering the Weibull parameters 

accordingly in the second stage and generating five different sets of failure data. This study also 

contains the verification of the apt distribution to fit the failure data by comparing reliability, 

calculated residual life and the experimental residual life with the help of the verification 

coefficient from Miner’s Rule. The variations in the verification coefficient is then observed to 

determine the level of accuracy of the method proposed at both high and low shape values 

(Weibull parameter) or high and low stress levels. In the later sections we will understand the 

details of the reliability estimation method and its verification. 

The research is completely oriented on the failure data from simulation and the appropriate 

values assumed during the simulation of the data.  

3. FATIGUE RELIABILITY ANALYSIS 

Before we proceed any further into the paper, it is necessary we understand the core concept of 

this research, why it is important to do this research and how significantly does it contribute to 

the existing research. 
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Fatigue reliability analysis is the prime objective of this research. Many researches have been 

conducted in the field of fatigue reliability and still the area has a lot of spots to investigate on. 

Fatigue reliability analysis refers to the study of a specimen’s life cycle which under fatigue 

loading. Reliability analysis completely defines a specimen’s probability of survival at any given 

stage. The disciplined approach is to investigate the failure occurrence. In general reliability 

theory, the concept of a failure rate  is often used as an alternative description of the lifetime 

distribution of a specimen. Let ‘T ‘be the random lifetime of a specimen,  its probability 

density. The nonnegative function , defined as  

, is called the failure intensity function or fatigue failure rate (or hazard function). 

 characterizes the failure time hence it is necessary to fit a suitable distribution and 

investigate the times to failure.  Hence with the help of an appropriate probabilistic distribution 

and data from test results, we can analyze the time to failure of the specimen.  

In this research we need to know how to perform reliability analysis of fatigue data. In our study, 

the loading conditions are variable amplitude (two-stage loading). This implies there are two 

different loading stages experienced by the same specimen. The type of strain experienced by the 

specimen is known as ‘fatigue’. 

Specimens are first subjected to stage 1 level loading for a specific period of time (in terms of 

no. of cycles), which is usually pre-determined. Then the remaining specimens which survived 

stage 1 level of loading is subjected to another stage 2 level loading until failure. The failure data 

is then collected. Using this test data and fitting it to an appropriate distribution completes the 

fatigue reliability analysis of the specimen. 

In this research we have generated test data through simulation to analyze results. Appropriate 

values for the levels of stress have been assumed. The failure data is generated randomly, 

choosing a random distribution and a failure interval corresponding to the stress levels in terms 

of number of loading cycles. The details of these assumptions are explained under sections 6, 7 

& 8 of this report. 

4. PROBABILISTIC MINER’S RULE IN FATIGUE RELIABILITY ANALYSIS 

The prediction of fatigue life under two-stage loading has always been obscure. Studying some 

of the successful works and combining methods done under two-stage loading condition, in this 

paper we have proposed an appropriate method to estimate the fatigue reliability under two-stage 

loading conditions. Hence we use the constant amplitude test data of the specimen to predict the 

fatigue life under variable amplitude loading. So the Probabilistic Miner’s rule is used to predict 

the variable amplitude fatigue life given the constant amplitude test data. 

 

Miner’s rule is believed to be most researched area in the field of fatigue reliability analysis. This 

section is a brief description of the Two-Dimensional Miner’s rule from the existing literatures. 
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In the following, D denotes fatigue damage, S denotes either stress amplitude  or mean stress 

,  represents the number of loading cycles applied in a multi stage loading block,  

denotes fatigue life under constant amplitude loading,  denotes fatigue life under variable 

amplitude or stochastic time-history loading, N denotes cycles of fatigue loading in any form, 

 are percentile constant amplitude loading, percentile variable amplitude loading 

and percentile number of loading cycles applied respectively. 

 

In the first place, four basic assumptions of the evolution of nonlinear fatigue damage are 

proposed as follows [10 and 11]: 

 

1. Monotonic increasing: dD/dN > 0; and δ(dD/dN)δS > 0; for each individual in a specimen 

population under constant amplitude loading. 

2. Noncoupling: for each individual specimen under variable amplitude loading, the damage 

path D–N in each loading stage is the same as the corresponding D–N path under constant 

amplitude loading. 

3.  Separability: for each individual specimen, the fatigue damage growth ratio under constant 

amplitude loading can be described by a generally separable function dD/dN = 

(D)g(Sa,Sm). 

4. Nonintersecting: for any two different individuals in a specimen population under constant 

amplitude loading, the two individuals’ Sa–Sm–Nc surfaces do not intersect with each other 

in the range Sa > 0 and Nc > 0. 

 

From the above four phenomenological assumptions about fatigue damage, a new random 

fatigue accumulative damage rule, namely, TPMiner has been established. 

 

 = 1,   = ,              (1) 

 

Pr{  ≤ } = 1 – p                 (2) 

 

Where  = (  is the cycle number of . In variable amplitude loading, 

 is the constant amplitude fatigue life corresponding to ( p 

denotes reliability (survival probability), and  are percentiles with p, 

respectively. 

 

In practical engineering, structural components usually are subjected to fluctuating load which is 

of stochastic time-history. Nevertheless, both the multistage loading block and the continuous 

one can be obtained by using rain-flow counting method [12]. 

 

More than 40 sets of test data have been employed by the author to verify TPMiner on the 

conditions of variable amplitude loading [13]. The results are very encouraging. 
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5. FATIGUE RELIABILITY ANALYSIS UNDER TWO-STAGE LOADING 

CONDITION 

In this section we will discuss the analytical approach to estimate the fatigue reliability of the 

specimen under two-stage loading condition. First we need to understand what a two-stage 

loading condition is. Suppose we subject the specimen population to stress level I which is 

represented by ( , where  is the stress amplitude and  is the mean stress. Then the 

same set of specimen population is subjected to stress level II which is represented by ( . 

Each individual in the specimen population is run to  number of cycles in stage I and then the 

specimens are run until failure in stage II or stress level II. While  is a given number of cycles 

or is predetermined,  is a random variable of the specimen population. 

 

Now, in this situation when a specimen population is subjected to variable stress levels or two 

different stages of stress then there are several possible cases which have to be studied. The 

different cases are discussed below: 

 

CASE I: 

All the specimens in the population fail in the first stage. This happens when  is very large. 

 are the constant amplitude lives of the specimen under stress level I and stress level II 

respectively. If >  then the entire specimen population fails in stage I itself. From 

experimental results, it can be verified that the constant amplitude lives follow log-normal 

distribution, i.e. lg  and lg , where μ and σ are the logarithmic 

mean and standard deviation respectively. For a given number of cycles , one can obtain 

 

              (3) 

Where,  is the standard normal distribution function,  is the reliability, i.e. the percentage of 

the specimen population survive  cycles at the first level ( . 

 

CASE II: 

Some of the specimens from the entire population fail in stage I. In this case . This 

happens when  is anywhere close . This means some individuals of   of 

the population will fail at the fist loading level and for those individuals  = 0. 

 

CASE III: 

There are no failures in the first loading level or stage I. i.e. none of the specimens from the 

population fails until  cycles. In this case  = 1. This happens when  takes a small value or 

when . All the specimens are then run until failure in the II stage for  cycles which is 

a random variable. 
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Case III is what would be studied in this research. Since this case represents several practical 

applications, it is necessary that we understand how to estimate the life in this case. 

 

Let  be the total variable fatigue life of the specimen population under two-stage loading, then  

 

               (4) 

 

Further, let , and denote percentiles of p% survival of random variable and 

 respectively. If , then . According to equation (1) of TP Miner’s 

rule, it follows that 

 

             (5) 

 

When , the reliability-based fatigue life prediction under two-stae loading can be achieved 

by directly using the above equation as follows 

 

, Pr {  = p        (6) 

From a lot of test results in literature, it can be found that the conditional probability distribution 

of  is not log-normal unless =1. Particularly when , the conditional probability of the 

residual life  can be fitted by a three-parameter Weibull distribution [14]. 

 

          (7) 

 

Where  is the conditional percentile with p’ and c, b and  are the Weilbull shape 

parameter, characteristic parameter and position parameter respectively. 

Now setting , one can obtain 

                 (8) 

 

Given a two-stage loading ( as well as the probability distributions of the 

two constant amplitude fatigue lives  and , it is easy to perform 

reliability-based prediction of the residual life and the total life . 

 

6.     SIMULATION ANALYSIS OF TEST DATA AND RESULTS 

Now we know the method we are going to employ in analysis of fatigue data is the Probabilistic 

Miner’s Rule. TPMiner’r rule will form the basis of the analytical analysis. However, there are 

other significant methods which might also prove effective. In order to perform the reliability 
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analysis, we need to first analyze the data we have generated. Since this is a probabilistic 

approach, we need to fit appropriate distributions for the data in order to further analyze it.  

In the previous section we examined three different scenarios of fatigue conditions. Combining 

the methods employed in these 3 cases we can find out what distribution can be of best fit to 

failure data from two stage loading. According to case (I), if the entire specimen population fails 

in 1
st
 loading stage itself then the failure times of the specimens are said to follow Log-Normal 

Distribution [15]. In this case the value of is lesser compared to the constant amplitude life of 

the specimen. In other words, the number of loading cycles applied is more than the total number 

of life cycles the specimen can survive for (under a specific stress level). In this case the 

reliability of the specimen at any given stage can be found using the following, 

                                                                              (9) 

 

Where, is the probability of survival, p0 is the reliability, i.e. the percentage of the specimen 

population survive n1 cycles at the first level (Sa1,Sm1),  is the standard normal distribution 

function.  is log-normally distributed with mean and variance  ,  respectively. 

This method holds good for reliability analysis under single stage fatigue loading but we want 

the specimen to pass through two different stages of loading and then perform the reliability 

analysis. Hence if we take into consideration of case (III), where we had discussed about the 

specimen being tested under two different stages of loading we can conclude that the failure time 

of specimens in the second stage alone is considered to follow 3P-Weibull distribution or 

otherwise the residual life, is said to follow 3P-Weibull distribution. The probability of 

survival under the second stage alone can be estimated as follows: 

                                                                    (10) 

i.e., given the condition  (constant amplitude fatigue life in stage I is greater than the 

no. of cycles applied in stage I) then the probability of survival in the second stage can be 

estimated using the above formulation where  are the location parameter, scale 

parameter and the shape parameter respectively. 

Now we can combine these two cases to derive the method for the reliability analysis under two 

stage fatigue loading condition under these assumptions: 

1. There are no failures in stage 1 

2. Best fit distribution. 

The estimation of reliability represents the probability of survival of a specimen after passing 

through both the stages. Now, we know how to calculate the survival probabilities individually 
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for each stage. Combining both these methods and using the principles of TP Miner’s rule we 

can frame the reliability estimation methods for two stage loading as follows: 

Generally, if  takes such a small value that = 1; then the whole population of specimen will 

not fail at the first loading level. However, when  becomes large to a certain degree one can 

obtain ; that means some individuals of   of the population will fail at the 

first loading level, and for those individuals :  

 

Let  be the total fatigue life of specimen population under two-stage loading, then  

;  , .                                                                         (11) 

 

Further, let  denote percentiles of p% survival of random variables 

 respectively. If , then . According to Eq. (1) of TPMiner, 

it follows that 

                                                                                                      (12) 

 

)                                                                                          (13) 

 

Consequently when = 1, the reliability-based fatigue life prediction under two-stage loading 

can be achieved by directly using Eq. (13) as follows: 

 

=                                                                                     (14) 

  

 

However, when , the fatigue life of the population should be divided into two parts. And 

Eq. (12) applies to the part of  while Eq. (13) applies to the other part. 

 

In fatigue tests under two-stage loading, many researchers focus their attention on the residual 

life . From a lot of test results in literature, it can be found that the conditional probability 

distribution of  is not log-normal unless  When , the conditional probability of 

the residual life is fitted by the 3-parameter Weibull Distribution rather than log-normal 

distribution. Therefore, 

 

                                                                  (15) 

 

Where  is the conditional percentile with , and ,b and  are the Weibull shape parameter, 

characteristic parameter and position parameter, respectively. 

 

Now setting = , one can obtain, 
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                                                                               (16) 

 

For the proof of the above equation please refer to [16] 

 

Now following the procedure below and using the equations from (9) to (16) we can obtain the 

reliability of the specimen under two stage loading condition 

 

1. Assumption of appropriate stress levels (  and (  

2. Assumption of the constant amplitude lives . Which in the simulation model are 

assumed with an appropriate mean and a standard deviation. Table (1) shows the constant 

amplitude lives. Also the value of  is assumed to be lesser than . Hence . 

3. Generate random Weibull data (100 samples) assuming values for the three parameters of 

Weibull. (Assumptions made here correspond with the assumptions made for ). 

4. Now the software generates random failure data (time to failure in terms of no. of cycles). 

5. Now the appropriate 3 parameters of Weibull for this random failure data are estimated by 

fitting (distribution fitting) this set of data to Weibull distribution in EasyFit. 3 parameters of 

Weibull can also be estimated by other means [17]. 

6. Now we have the 3 parameters of Weibull for the first set of failure data. 

7. Arrange the failure data in ascending order and the data will now represent no. of cycles to 1
st
 

failure, no. of cycles to 2
nd

 failure,…, no. of cycles to 100
th

 failure. 

8. By using Eq. (9), calculate  

9. By using Eq. (15), calculate  for each of  of the failure data from simulation. 

10. According to Eq. (16), calculate  corresponding to each . 

11. Now we have the reliability at every stage (for every value of ). Now assume another 

stress value for (  and appropriately alter the parameters of Weibull and 

generate the second set of random failure data. While altering the parameters, the Weibull 

characteristics [18] have to be taken into consideration since the parameter alteration is the 

direct reflection of stress change.  

12. Do the 3 parameter Weibull distribution fitting to the second set of failure data and estimate 

the 3 parameters of Weibull. Repeat steps 7-10 five times to obtain 5 different sets of data. 

13. Now we have the reliability for the second set of data. Similarly generate 5 sets of random 

data assuming 5 different values for (  by changing the Weibull parameters 

according to Weibull characteristics and estimate the reliability for each . Table (2) 

shows the calculated reliability values at each stage for 5 different sets of failure data (low 

values of stress or shape parameter (1.0-2.0)). 

 

 

                             ASSUMPTIONS MADE FOR LOW LEVELS OF STRESS 
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DEFINITION NOTATION ASSUMED VALUES 

Constant Amplitude Fatigue 

life (Level I) 
 log ~ N(4.962, 0.03) 

Constant Amplitude Fatigue 

lives (different level II’s) 
 Log ~ N(4.6573, 0.04) 

Log  ~ N(4.585, 0.03) 

Log  ~N(4.5357, 0.066) 

Log  ~N(4.5102, 0.063) 

Log  ~N(4.4698, 0.069) 

Probability of survival in 

stage I 
  

No. of loading cycles 

applied in stage I 
  

Shape parameter C C=1.3085, 1.443, 1.5658, 

1.6131, 1.8416 

       

    TABLE 1 
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7.        RELIABILITY VARIATION ANALYSIS 

 

Now we have estimated the reliability at all the stages of failure for five different stress values. 

Now we can analyze how reliability varies with change in stress levels.  

 

1. First we need to choose a common interval for all five set of failure data between which we 

will analyze the reliability variation.  

2. Once we choose an interval, using the 3 parameters of Weibull we estimated earlier for the 

1
st
 set of failure data, we estimate the value of reliability using Eq (9), (15) & (16) for each of 

the failure time in the interval. 

C = 1.3085 C = 1.443 C = 1.5658 C = 1.6131 C = 1.8416

Failure timeReliability Failure timeReliability Failure timeReliability Failure timeReliability Failure timeReliability

14498.12 0.998009 12133.09 0.997595 10276.01 0.995144 9960.671 0.995047 8744.226 0.997501

14746.03 0.991985 12350.69 0.991768 10493.42 0.98878 10024.19 0.993375 9066.692 0.990844

14968.82 0.985353 12686.15 0.979565 10516.32 0.988006 11391.1 0.92607 10683.85 0.909873

16869.59 0.90901 12686.47 0.979552 12071.22 0.905303 11482.74 0.919989 11082.14 0.880328

16924.71 0.906505 14488.81 0.880618 12394.88 0.882933 11509.23 0.918203 11796.97 0.820514

17608.23 0.874736 14818.83 0.8591 12455.33 0.878622 12660.78 0.83102 11919.88 0.809507

18888.4 0.813095 14961.15 0.849637 13862.02 0.770128 12673.05 0.830012 12124.95 0.790756

18898.85 0.812586 16825.34 0.720412 13878.84 0.768766 13031.78 0.800008 13352.8 0.67151

18953.92 0.809904 16838.66 0.719476 14096.02 0.751109 14597.33 0.66261 13434.25 0.663354

20730.45 0.723534 16839.75 0.7194 14953.17 0.680702 14849.15 0.640302 13443.61 0.662415

21065.21 0.707466 18934.57 0.575794 15017.69 0.675395 15143.88 0.614341 14854.22 0.521936

21572.59 0.683338 19004.45 0.571199 15177.94 0.66223 16112.11 0.531124 14909.17 0.516598

23254.6 0.605883 19089.78 0.565611 15315.3 0.650971 16224.42 0.52175 15062.41 0.501803

23985.32 0.573698 21689.83 0.409393 14953.17 0.680702 16342.85 0.511941 16452.13 0.375736

24179.39 0.565317 21826.85 0.401999 15017.69 0.675395 16112.11 0.531124 16510.29 0.370842

25836.87 0.496777 22269.81 0.378705 15177.94 0.66223 16224.42 0.52175 16516.85 0.370292

25963.71 0.491764 22393.42 0.372373 15315.3 0.650971 16342.85 0.511941 18803.22 0.207742

26163.13 0.483951 25399.58 0.240735 16878.72 0.526472 17847.93 0.395221 18993.87 0.1969

28040.4 0.414576 25407.02 0.240461 17132.46 0.507206 17955.14 0.387535 19091.05 0.191533

28465.84 0.399908 25958.26 0.220835 17176.06 0.50393 18061.38 0.380008 18803.22 0.207742

29685.75 0.359999 27464.95 0.173667 17389.48 0.488035 18224.47 0.368628 18993.87 0.1969

30797.87 0.326351 28241.33 0.152804 18662.28 0.398834 19513.09 0.286351 19091.05 0.191533

32211.15 0.287233 28476.27 0.14692 19078.77 0.371909 19933.58 0.262483 20244.79 0.13574

32394.61 0.282445 29122.48 0.131709 19180.45 0.365513 20029.33 0.257253 20704.39 0.117371

38523.58 0.156579 29292.57 0.127935 21438.42 0.242018 22010.5 0.165434 20790.09 0.114172

38628.32 0.15494 35661.62 0.039524 21472.54 0.240422 23158.52 0.125418 20837.85 0.11242

38766.96 0.152792 36441.86 0.033861 21840.33 0.223718 23444.6 0.116784 21445.9 0.091922

45119.18 0.078631 36784.31 0.031616 26557.88 0.079762 29320.74 0.022257 23688.57 0.040817

45727.72 0.073606 37290.27 0.028548 26801.31 0.075241 30202.54 0.016842 26466.83 0.012872

45789.59 0.073111 40695.62 0.014032 32997.81 0.014603 30396.78 0.015823 26564.06 0.012327

53449.63 0.030809 41779.78 0.011101 36792.64 0.004669 30702.5 0.014332 31111.35 0.00131

TABLE 2   (1 < C < 2) RELIABILITY ESTIMATION
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3. Similarly, using 3 parameters of Weibull for the 2
nd

 set of failure data, we estimate reliability 

values for each failure time in the interval. Same steps are followed to obtain reliability 

values for the 5 different stress levels (here represented by 5 sets of Weibull parameters). 

4. Now, plot the graph Cycle time vs Reliability as shown in figure (1). 

5. Table (3) shows the different values calculated between the failure time interval 15000-

20000 and figure (1) shows the reliability variation graph.  
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FIGURE 1
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8.        STUDY ON VERIFICATION COEFFICIENT AND ACCURACY 

 

We have now estimated reliability and studied the variations considering 3P-Weibull distribution 

as an appropriate fit for the failure data. In this section we will check for the accuracy of the 

method proposed using Miner’s verification coefficient. In the method we used above we 

assumed that 3P-Weibull distribution would be the most apt fit the failure data presented. This is 

mostly due to the reason that, 3P-Weibull distribution has the most versatile characteristics. It is 

necessary to understand the nature of 3P-Weibull distribution and how it best relates to failure 

data. 

 

The characteristic exhibited by the 3P-Weibull distribution cooperates with the nature failure 

data but we need to check if the distribution also provides accurate results. This is done by 

C = 1.3085 C = 1.443 C = 1.5658 C= = 1.6131 C = 1.8416

Failure time Reliability Reliability Reliability Reliability Reliability

15070 0.982074 0.842336 0.671095 0.620829 0.501074

15080 0.981742 0.841662 0.670273 0.61995 0.500114

15090 0.981409 0.840989 0.669451 0.619071 0.499154

15100 0.981075 0.840314 0.66863 0.618193 0.498196

15110 0.980739 0.83964 0.667808 0.617315 0.497237

15120 0.980402 0.838965 0.666987 0.616437 0.49628

16330 0.932936 0.755218 0.569168 0.513001 0.386123

16340 0.932504 0.754516 0.568378 0.512176 0.385267

16350 0.932072 0.753813 0.567589 0.511351 0.384412

16360 0.931639 0.753111 0.5668 0.510527 0.383558

16370 0.931205 0.752409 0.566012 0.509703 0.382705

16380 0.930771 0.751707 0.565224 0.50888 0.381853

16950 0.905353 0.71166 0.521027 0.462983 0.334986

16960 0.904896 0.710958 0.520265 0.462197 0.334194

16970 0.90444 0.710256 0.519504 0.461411 0.333404

16980 0.903983 0.709555 0.518743 0.460626 0.332615

16990 0.903525 0.708853 0.517983 0.459842 0.331827

17000 0.903068 0.708152 0.517223 0.459058 0.33104

17010 0.90261 0.707451 0.516464 0.458275 0.330254

17020 0.902152 0.706749 0.515705 0.457492 0.329469

17030 0.901693 0.706048 0.514947 0.456711 0.328685

17040 0.901234 0.705347 0.514189 0.45593 0.327903

18650 0.824691 0.594671 0.399646 0.339945 0.216758

18660 0.824205 0.594003 0.398985 0.339288 0.216161

18670 0.82372 0.593336 0.398324 0.338633 0.215566

18680 0.823234 0.592669 0.397665 0.337978 0.214971

19970 0.760364 0.509532 0.31829 0.260485 0.147739

19980 0.759878 0.508912 0.31772 0.259938 0.147288

19990 0.759391 0.508293 0.317151 0.259392 0.146839

20000 0.758905 0.507674 0.316582 0.258847 0.146391

TABLE 3 (ESTIMATION OF RELIABILITY BETWEEN THE INTERVAL 15000-20000)
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verifying the results. Considering the results we obtained from the previous section, we will 

determine the Miner’s verification coefficient using the following equation. 

 

, where β is the verification coefficient                                                           (17) 

 

The value of β is found at each stage i.e. for every single failure data in the table. This value of β 

provides the verity. Several researches and tests have been performed to determine the range of β 

[19]. Several tests proved several conclusions. 

 

Considerable test data has been generated in an attempt to verify Miner's Rule. Most test cases 

use a two step load history. The results of Miner's original tests showed that the damage criterion 

X corresponding to failure ranged from 0.61 to 1.45. Other researchers have shown variations as 

large as 0.18 to 23.0, with most results tending to fall between 0.5 and 2.0. In most cases, the 

average value is close to Miner's proposed value of 1.0. 

 

From the above we can conclude that, it is best if the value of β is close to unity then the values 

determined are acceptable. The step wise procedure involved in determining the value of β is as 

follows 

 

1. The failure data generated in the previous section and the results obtained from simulation 

are carried over for determining the value of β. 

2. Now we already have the failure data and the corresponding reliability’s at each stage. 

3. The table (1) shows the different values assumed in the simulation model 

4. Now calculate &  corresponding to each . Since we know that &  are 

Log-normally distributed, using the equation 

 

     &         

and substituting calculated values of reliability from table (2) for p and assumed values of       

mean and standard deviations for &  from table (1), we can determine the 

corresponding values of & . 

5. Now using the equation (17) we can determine the verification coefficient β. 

6. Now corresponding to each &  we can also calculate the residual life   using 

the equation  

)                                                                                             (18) 

Now we have calculated the verification coefficient for the five different sets of failure data 

corresponding to five different stress values. In order to compare the verification coefficients 

between the different sets of failure data, we extend table (3) where we had found the reliability 

for a specific interval 15000-20000 cycles for the different set of Weibull parameters which 
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represent the stress levels. Steps 4 – 6 of verification calculation procedure is repeated for these 

values of reliability as shown in table (4). Figure (2) shows the different ranges of verification 

coefficients corresponding to different stress levels. 

 

Table (4) shows the variation in reliability and the ranges, interval of verification for low values 

of shape parameter (or low values of stress in stage II). We will further analyze the reliability 

variations and variations in verification coefficients for higher values of shape parameter (or 

higher values of stress in stage II) 

 

NOTE: All the values and parameters corresponding to the stress at Stage I remain unaltered at 

all times. 

 

The interval of the low shape parameters (1.0 and 2.0) was estimated. Now by altering the 

assumed values (3 parameters of Weilbull distribution) corresponding to the new values assumed 

for ’s while generating random Weibull data, we can generate failure data with higher values 

for shape parameter as shown in table (6). The table (5) below shows the different assumptions 

made while generating failure data for higher values of shape parameter. 

 

 

C = 1.3085 C = 1.443 C = 1.5658 C = 1.6131 C = 1.8416

F.T ReliabilityV.C (β) Resd Life ReliabilityV.C (β) Resd Life ReliabilityV.C (β) Resd Life ReliabilityV.C (β) Resd Life ReliabilityV.C (β) Resd Life

15070 0.9821 0.8402 26132.8 0.8423 0.9071 19963 0.6711 0.8416 25854 0.6208 0.8628 23589 0.5011 0.8686 23031

15080 0.9817 0.8403 26134.1 0.8417 0.9073 19963 0.6703 0.8418 25855 0.62 0.863 23590 0.5001 0.8687 23032

15090 0.9814 0.8404 26135.5 0.841 0.9075 19963 0.6695 0.8419 25855 0.6191 0.8631 23591 0.4992 0.8689 23033

15100 0.9811 0.8406 26136.9 0.8403 0.9077 19963 0.6686 0.8421 25856 0.6182 0.8633 23591 0.4982 0.869 23033

15110 0.9807 0.8407 26138.2 0.8396 0.9079 19964 0.6678 0.8422 25857 0.6173 0.8634 23592 0.4972 0.8692 23034

15120 0.9804 0.8408 26139.5 0.839 0.908 19964 0.667 0.8423 25858 0.6164 0.8636 23593 0.4963 0.8693 23035

16330 0.9329 0.8571 26244.4 0.7552 0.9304 19997 0.5692 0.8592 25947 0.513 0.8821 23671 0.3861 0.8881 23130

16340 0.9325 0.8572 26245 0.7545 0.9306 19997 0.5684 0.8593 25948 0.5122 0.8822 23671 0.3853 0.8883 23130

16350 0.9321 0.8574 26245.6 0.7538 0.9308 19997 0.5676 0.8594 25948 0.5114 0.8824 23672 0.3844 0.8884 23131

16360 0.9316 0.8575 26246.2 0.7531 0.931 19997 0.5668 0.8596 25949 0.5105 0.8826 23673 0.3836 0.8886 23132

16370 0.9312 0.8576 26246.8 0.7524 0.9312 19998 0.566 0.8597 25950 0.5097 0.8827 23673 0.3827 0.8887 23133

16380 0.9308 0.8578 26247.4 0.7517 0.9314 19998 0.5652 0.8598 25951 0.5089 0.8829 23674 0.3819 0.8889 23133

16950 0.9054 0.8656 26278.9 0.7117 0.9419 20011 0.521 0.8678 25989 0.463 0.8916 23708 0.335 0.8977 23176

16960 0.9049 0.8658 26279.4 0.711 0.9421 20011 0.5203 0.8679 25990 0.4622 0.8917 23709 0.3342 0.8979 23177

16970 0.9044 0.8659 26279.9 0.7103 0.9423 20012 0.5195 0.8681 25991 0.4614 0.8919 23709 0.3334 0.898 23177

16980 0.904 0.866 26280.4 0.7096 0.9425 20012 0.5187 0.8682 25991 0.4606 0.892 23710 0.3326 0.8982 23178

16990 0.9035 0.8662 26280.9 0.7089 0.9427 20012 0.518 0.8683 25992 0.4598 0.8922 23710 0.3318 0.8983 23179

17000 0.9031 0.8663 26281.4 0.7082 0.9429 20012 0.5172 0.8685 25993 0.4591 0.8923 23711 0.331 0.8985 23180

17010 0.9026 0.8664 26281.9 0.7075 0.9431 20013 0.5165 0.8686 25993 0.4583 0.8925 23712 0.3303 0.8986 23180

17020 0.9022 0.8666 26282.3 0.7067 0.9432 20013 0.5157 0.8687 25994 0.4575 0.8927 23712 0.3295 0.8988 23181

17030 0.9017 0.8667 26282.8 0.706 0.9434 20013 0.5149 0.8689 25995 0.4567 0.8928 23713 0.3287 0.8989 23182

17040 0.9012 0.8669 26283.3 0.7053 0.9436 20013 0.5142 0.869 25995 0.4559 0.893 23713 0.3279 0.8991 23183

18650 0.8247 0.8892 26349.5 0.5947 0.9735 20046 0.3996 0.8914 26097 0.3399 0.9176 23803 0.2168 0.924 23297

18660 0.8242 0.8894 26349.9 0.594 0.9737 20046 0.399 0.8915 26097 0.3393 0.9177 23804 0.2162 0.9241 23298

18670 0.8237 0.8895 26350.2 0.5933 0.9739 20046 0.3983 0.8917 26098 0.3386 0.9179 23804 0.2156 0.9243 23299

18680 0.8232 0.8897 26350.6 0.5927 0.9741 20047 0.3977 0.8918 26098 0.338 0.918 23805 0.215 0.9244 23299

19970 0.7604 0.9077 26391.7 0.5095 0.9981 20070 0.3183 0.9097 26173 0.2605 0.9377 23871 0.1477 0.9442 23387

19980 0.7599 0.9078 26392 0.5089 0.9983 20070 0.3177 0.9099 26174 0.2599 0.9379 23872 0.1473 0.9444 23388

19990 0.7594 0.908 26392.3 0.5083 0.9985 20070 0.3172 0.91 26174 0.2594 0.938 23872 0.1468 0.9446 23388

20000 0.7589 0.9081 26392.6 0.5077 0.9987 20070 0.3166 0.9102 26175 0.2588 0.9382 23873 0.1464 0.9447 23389

TABLE 4 (ESTIMATION OF VERIFICATION COEFFICIENT BETWEEN 15000-20000 CYCLE NO.)
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                 ASSUMPTIONS MADE FOR HIGH LEVELS OF STRESS 

 

DEFINITION NOTATION ASSUMED VALUE 

Constant Amplitude Fatigue 

Life in Stage I 
 log ~ N(4.962, 0.03) 
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FIGURE 2
VERIFICATION COEFFICIENT (Y-AXIS)

VS
CYCLE NUMBER (X-AXIS)
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Different Constant Amplitude 

Fatigue Lives in Stage II 
 log  ~ N(4.0565, 0.0366) 

log  ~ N(4.0113, 0.0412) 

log  ~ N(3.9965, 0.0261) 

log  ~ N(3.939, .0286) 

log  ~ N(3.8043, 0.03113) 

No. of Loading cycles applied 

in Stage I 
  

Shape parameter C C=3.6417, 4.272, 4.368, 

4.6607, 5.3276 

 

               TABLE 5 

 

 

C = 3.6417 C = 4.272 C = 4.368 C = 4.6607 C = 5.3276

Failure timeReliability Failure timeReliability Failure timeReliability Failure timeReliability Failure TimeReliability

3839.093 0.988624 3666.13 0.993085 3390.577 0.996966 3167.27 0.99599 3142.526 0.994577

3848.268 0.987994 3746.971 0.98824 3702.377 0.975258 3431.578 0.975149 3341.054 0.977312

3879.978 0.985623 3883.802 0.97467 3703.273 0.97514 3488.247 0.966128 3367.688 0.973253

4437.323 0.871826 3977.59 0.960185 3770.748 0.964994 3719.239 0.901782 3678.32 0.87019

4439.588 0.871009 4256.426 0.881624 3978.982 0.914015 3757.225 0.885939 3714.405 0.849297

4457.795 0.864324 4265.878 0.87784 4043.134 0.891005 3775.262 0.877817 3717.435 0.84744

4855.752 0.667267 4329.576 0.850197 4095.428 0.869325 3914.679 0.801269 3786.116 0.800997

4857.089 0.66646 4366.849 0.832259 4275.815 0.773125 3921.627 0.796799 3791.336 0.797121

4869.087 0.659178 4371.611 0.829873 4309.157 0.751685 3924.766 0.79476 3817.507 0.776943

4884.404 0.649795 4549.675 0.725407 4319.364 0.744901 3951.677 0.776752 3876 0.727412

5036.707 0.55222 4550.404 0.724921 4462.366 0.63989 3968.883 0.764753 3987.602 0.617183

5050.598 0.543035 4648.197 0.655792 4471.817 0.632365 4089.186 0.670789 3994.978 0.609267

5075.201 0.5267 4668.937 0.640229 4615.792 0.511587 4105.15 0.657101 4013.994 0.588557

5076.262 0.525993 4678.296 0.633114 4674.678 0.460278 4115.016 0.648513 4091.895 0.500147

5087.325 0.518623 4678.567 0.632907 4677.997 0.45738 4125.278 0.639483 4093.876 0.497844

5327.033 0.360244 4811.854 0.526659 4687.082 0.449448 4267.714 0.505972 4108.952 0.48027

5327.426 0.359993 4844.099 0.50002 4847.764 0.312811 4279.788 0.494185 4110.55 0.478403

5327.655 0.359847 4856.919 0.48938 4857.761 0.304745 4291.356 0.482862 4218.742 0.352355

5335.771 0.354683 4926.385 0.431627 4869.598 0.295291 4316.133 0.45855 4222.792 0.347741

5342.328 0.350526 4986.618 0.382059 4947.931 0.235763 4466.717 0.313852 4289.854 0.273886

5498.619 0.25689 4992.847 0.376994 4963.896 0.224362 4468.062 0.312619 4305.295 0.257745

5570.509 0.21818 5168.106 0.243416 4972.008 0.218673 4595.113 0.204952 4320.462 0.242275

5572.933 0.216931 5168.187 0.24336 4973.28 0.217788 4603.08 0.198894 4362.529 0.201601

5596.391 0.205035 5170.818 0.241531 5090.445 0.144367 4609.917 0.193768 4372.257 0.192704

5806.276 0.115487 5362.321 0.127667 5142.28 0.117369 4611.5 0.192591 4386.162 0.180341

5844.703 0.102484 5389.441 0.114883 5161.464 0.108258 4758.293 0.100833 4400.29 0.16822

6194.303 0.027426 5753.87 0.017872 5181.544 0.09923 4794.838 0.083511 4523.409 0.082775

6506.363 0.005649 5778.291 0.015259 5795.514 0.001486 5225.298 0.003153 4895.833 0.002164

TABLE 6   (3.6 < C < 5.3) RELIABILITY ESTIMATION
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Table (7) shows the different values of reliability estimated at each stage for high values of 

stress. Table (8) shows the variations in verification coefficient and different values of reliability 

estimated for the failure data (high values of shape parameter) 

 

 
9.       DISCUSSION & COMMENTS BASED ON RESULTS 

 

In this section we will discuss the various results we obtained from the tables and graphs. 

 

Discussion on variations for low values of shape parameter (low levels of stress in stage II) 

 

Figure (3) & (4) are based on the values from the table (7). As the title suggests the graph shows 

the variation in verification coefficient and reliability for low values of shape parameter (1.0 – 

2.0) respectively between the cycle number intervals 15000-20000.  

 

Failure timeReliabilityV.C (β) Resd life ReliabilityV.C (β) Resd life ReliabilityV.C (β) Resd life ReliabilityV.C (β) Resd Life ReliabilityV.C (β) Resd Life

4000 0.9736 0.8733 6019.6 0.956 0.8901 5639 0.9069 0.9393 4764.4 0.7421 0.9762 4267.9 0.6038 1.0983 3177.9

4005 0.973 0.8736 6020 0.955 0.8904 5639.5 0.9051 0.9396 4764.7 0.7384 0.9766 4268.2 0.5984 1.0988 3178.1

4065 0.9647 0.8771 6024.6 0.9419 0.8942 5644.6 0.8823 0.9442 4767.6 0.691 0.9817 4271.3 0.5312 1.1056 3181.2

4160 0.9482 0.8827 6031.6 0.9157 0.9001 5652.6 0.8388 0.9514 4772.3 0.6082 0.9897 4276.4 0.4204 1.1163 3186.1

4240 0.9308 0.8874 6037.4 0.888 0.905 5659.3 0.7949 0.9574 4776.2 0.5329 0.9964 4280.7 0.3283 1.1253 3190.5

4260 0.9259 0.8885 6038.8 0.8802 0.9063 5660.9 0.7829 0.9589 4777.2 0.5135 0.9981 4281.8 0.3061 1.1275 3191.6

4265 0.9246 0.8888 6039.1 0.8782 0.9066 5661.3 0.7798 0.9593 4777.4 0.5086 0.9985 4282.1 0.3006 1.1281 3191.9

4370 0.8946 0.895 6046.4 0.8307 0.9131 5670 0.7098 0.9673 4782.6 0.4058 1.0073 4287.9 0.1948 1.1398 3197.9

4375 0.893 0.8953 6046.7 0.8282 0.9134 5670.4 0.7062 0.9676 4782.9 0.4009 1.0077 4288.2 0.1902 1.1403 3198.2

4380 0.8914 0.8956 6047.1 0.8256 0.9137 5670.8 0.7026 0.968 4783.1 0.3961 1.0081 4288.5 0.1858 1.1409 3198.5

4450 0.8672 0.8997 6051.8 0.7875 0.9181 5676.6 0.6496 0.9733 4786.6 0.3293 1.014 4292.5 0.1293 1.1486 3202.7

4455 0.8654 0.9 6052.2 0.7846 0.9184 5677 0.6457 0.9737 4786.9 0.3247 1.0144 4292.8 0.1257 1.1492 3203.1

4465 0.8616 0.9006 6052.8 0.7787 0.919 5677.8 0.6378 0.9744 4787.4 0.3154 1.0152 4293.4 0.1187 1.1503 3203.7

4585 0.8117 0.9077 6060.8 0.7013 0.9264 5687.7 0.5382 0.9835 4793.5 0.2128 1.0252 4300.5 0.0537 1.1635 3211.3

4590 0.8094 0.908 6061.1 0.6978 0.9267 5688.2 0.5339 0.9838 4793.7 0.2089 1.0256 4300.8 0.0517 1.1641 3211.7

4595 0.8071 0.9083 6061.5 0.6943 0.927 5688.6 0.5296 0.9842 4794 0.205 1.0261 4301.1 0.0498 1.1646 3212

4600 0.8048 0.9086 6061.8 0.6908 0.9273 5689 0.5252 0.9846 4794.2 0.2012 1.0265 4301.4 0.0479 1.1652 3212.3

4760 0.7229 0.918 6072.3 0.5689 0.9372 5702.5 0.3862 0.9966 4802.6 0.1 1.0397 4311.5 0.0112 1.1826 3223.4

4765 0.7201 0.9183 6072.6 0.5649 0.9375 5702.9 0.3819 0.997 4802.9 0.0975 1.0401 4311.8 0.0106 1.1832 3223.8

4775 0.7145 0.9189 6073.3 0.5568 0.9381 5703.8 0.3734 0.9977 4803.4 0.0926 1.041 4312.4 0.0095 1.1843 3224.5

4780 0.7117 0.9192 6073.6 0.5527 0.9384 5704.2 0.3692 0.9981 4803.7 0.0903 1.0414 4312.8 0.009 1.1848 3224.9

4880 0.6525 0.925 6080.1 0.4702 0.9446 5712.8 0.2871 1.0056 4809.1 0.0513 1.0496 4319.4 0.0027 1.1956 3232.4

4885 0.6494 0.9253 6080.5 0.466 0.9449 5713.2 0.2832 1.006 4809.4 0.0498 1.05 4319.7 0.0025 1.1962 3232.8

4890 0.6463 0.9256 6080.8 0.4619 0.9452 5713.7 0.2793 1.0064 4809.6 0.0483 1.0504 4320.1 0.0023 1.1967 3233.2

4895 0.6433 0.9259 6081.1 0.4577 0.9455 5714.1 0.2754 1.0067 4809.9 0.0468 1.0509 4320.4 0.0022 1.1972 3233.6

4950 0.6086 0.9292 6084.7 0.4121 0.9488 5718.9 0.2343 1.0109 4812.9 0.0326 1.0554 4324.2 0.001 1.2031 3237.9

4955 0.6054 0.9295 6085.1 0.408 0.9491 5719.4 0.2307 1.0112 4813.2 0.0315 1.0558 4324.5 0.0009 1.2037 3238.3

4990 0.5828 0.9315 6087.3 0.3793 0.9513 5722.5 0.2063 1.0138 4815.2 0.0246 1.0587 4326.9 0.0005 1.2074 3241.2

4995 0.5796 0.9318 6087.7 0.3752 0.9516 5722.9 0.2029 1.0142 4815.5 0.0237 1.0591 4327.3 0.0005 1.208 3241.6

5000 0.5763 0.9321 6088 0.3712 0.9519 5723.4 0.1996 1.0146 4815.8 0.0229 1.0595 4327.7 0.0005 1.2085 3242

C = 5.3276

TABLE 7 (ESTIMATION OF VERIFICATION COEFFICIENT BETWEEN 4000-5000 CYCLE NO.)

C = 3.6417 C = 4.272 C = 4.368 C = 4.6607
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Clearly from the graph we can say that when  the values of the verification 

coefficients are closest to unity. However the range (difference between maximum and minimum 

value) of verification coefficient is also found to be the largest for this value of shape parameter. 

Higher the range of the verification coefficient, higher is the percentage of error (Range of the 

verification coefficient is approximately equal to 0.1, which indicates large variations). The 

range for all the other values of shape parameter is almost equal (range of VC is approximately 

equal to 0.07). A smaller value of range indicates more consistency in accuracy. This indicates 

that the slope is more when  than for other values of c. 

 

As for the variation in reliability, we can see that for the lowest value of shape parameter 

( , the values of reliability are maximum. The different values of the shape 

parameters are representations of different stress levels in stage II of loading. We can conclude 

that as stress level in stage II increases the values of reliability decreases. Also it is clearly seen 

that the reliability range increases with increase in shape parameter which makes the curves 
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steeper for higher values of shape parameter. The table (8) below shows the reliability ranges and 

the verification coefficient ranges for different values of c. This indicates, for higher values of 

stresses in stage II, the rate of decrease in reliability increases with respect to cycle number 

(faster failure rate). 

 

SHAPE PARAMETER RELIABILITY RANGES VERIFICATION 

COEFFICIENT RANGES 

C = 1.3085 0.984358 - 0.7589 0.8390 – 0.9081 

C = 1.443 0.847037 - 0.507674 0.9071 – 0.9987 

C = 1.5658 0.67685 - 0.316582 0.8416 – 0.9102 

C = 1.6131 0.62699 - 0.258847 0.8628 – 0.9382 

C = 1.8416 0.507812 - 0.146391 0.8686 – 0.9447 

     

           TABLE 8 

 

Discussion on variations for high values of shape parameter (higher values of stress in stage 

II) 

 

Previously we studied the variations in reliability and verification coefficient for low stress 

values in stage II. In this section we will understand the variations for higher values of stress in 

stage II (high values of shape parameter, 3.6 - 5.4) between the cycle number intervals 4000-

5000 

 

From figure (4), we can say that higher the values of the shape parameter, the value of the 

verification coefficient is high. Here, when , the values of verification 

coefficients are consistently close to unity and also the range is narrow for these values. Also for 

lower values of shape parameter the range of the verification coefficient becomes narrow. The 

narrower the ranges of V.C are, the more consistent the values are. This can also be observed 

even in the previous analysis for values of shape parameter between 1.0 and 2.0. Hence we can 

conclude that, lower the values of shape parameter, the verification coefficient becomes more 

consistent.  

 

From figure (3), we can interpret the reliability variation increases with increase in shape 

parameter. Similar to the previous case where we observed the increase in rate of decrease in 

reliability for higher values of c, even in this case for higher values of the shape parameter, the 

reliability curves become steeper, making the reliability ranges wider. Hence even for higher 

values of the shape parameter, the rate of decrease in reliability increases.  The table (9) below 

shows the ranges of reliability & verification coefficient for different values of shape parameter 

(higher stress values in stage II). 
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SHAPE PARAMETER RELIABILITY RANGES VERIFICATION 

COEFFICIENT RANGES 

C=3.6417 0.973574 - 0.576315 0.8733 – 0.9321 

C=4.272 0.955966 - 0.371194 0.8901 – 0.9519 

C=4.368 0.906898 - 0.19603 0.9393 – 1.0146 

C=4.6607 0.742105 - 0.022851 0.9762 – 1.0595 

C=5.3276 0.603838 - 0.000453 1.0983 – 1.2085 

    

            TABLE 9      
 

Comparing table (8) & table (9) or figures (1) & (3) of low & high shape values respectively, we 

can say that the reliability ranges are wider in later. From which we can conclude that failure rate 

increases for higher values of shape parameter. Also in table (9) for high shape values, there is a 

sudden decrease in reliability when the shape parameter increased from 4.368 to 4.6607, their 

corresponding stress levels give an idea on the strength of the material tested. A lot can be 

understood about the nature of the material from the above analysis. 

 

Thus we have successfully presented a model to derive the reliability, verification coefficient and 

residual life and they were all analyzed at different levels of stresses. In this study we have 

analyzed reliability considering the three-parameter Weibull distribution. However, we can 

further study reliability fitting data to other distributions which can facilitate a fatigue failure rate 

and compare the best fit distribution with the help of verification coefficient ranges. 
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