
Northeastern University

Electrical and Computer Engineering Master's
Theses

Department of Electrical and Computer
Engineering

January 01, 2009

Specification and formal verification of fuzzy
information processing for the case of edge
detection
Kemal Keskin
Northeastern University

This work is available open access, hosted by Northeastern University.

Recommended Citation
Keskin, Kemal, "Specification and formal verification of fuzzy information processing for the case of edge detection" (2009). Electrical
and Computer Engineering Master's Theses. Paper 28. http://hdl.handle.net/2047/d20000030

http://iris.lib.neu.edu/elec_comp_theses
http://iris.lib.neu.edu/elec_comp_theses
http://iris.lib.neu.edu/elec_comp_eng
http://iris.lib.neu.edu/elec_comp_eng
http://hdl.handle.net/2047/d20000030

NORTHEASTERN UNIVERSITY

Graduate School of Engineering

Thesis Title: Specification and Formal Verification of Fuzzy Information

Processing for the Case of Edge Detection.

Author: Kemal Keskin.

Department: Electrical and Computer Engineering

Approved for Thesis Requirements of the Master of Science Degree:

Thesis Advisor: Prof. Mieczyslaw M. Kokar Date

Thesis Reader: Prof. Stefano Basagni Date

Thesis Reader: Prof. Bahram Shafai Date

Chairman of Department: Date

Graduate School Notified of Acceptance:

Director of the Graduate School: Yaman Yener Date

SPECIFICATION AND FORMAL VERIFICATION OF

FUZZY INFORMATION PROCESSING FOR THE

CASE OF EDGE DETECTION

A Thesis Presented

by

Kemal Keskin

to

the Graduate School of Engineering

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Electrical Engineering

in the field of

Computer Engineering

Northeastern University

Boston, Massachusetts

August 2009

ii

Abstract

This thesis explores how an information fusion system can be verified before it

is built. Towards this aim, a system is first specified mathematically in a for-

mal language. The specification then can be analyzed by formulating various

conjectures (theorems) and proving (or disproving) them using an automatic

theorem prover. In our work we use Metaslang as the formal specification

language and Specware, which is a tool that supports category theory based

algebraic specification of software. One of the most important aspects in in-

formation fusion is the uncertainty of the fused decisions that are based on

uncertain sources. Out of many possible uncertainty types we focus on fuzzy

set theory. We have specified a library of fuzzy set theory that can be used to

build specifications of fuzzy information processing systems. As an example,

a (fuzzy) edge detection algorithm was implemented and then verified using

two theorem provers - Snark and Isabelle. With the help of this approach,

reasoning about the impact of the uncertainty of input information is speci-

fied formally in every step of the fusion process and can be verified before the

system is coded in a programming language.

iii

Acknowledgements

I would like to thank to Professor Mieczyslaw M. Kokar for his guidance

throughout my research and his patience to my questions. I would also like

to thank to Dr. Stephen Westfold for his support with Specware and Isabelle.

Finally, I would like to mention Gülşah Çakıroğlu for her specifications that

motivated me in my research.

iv

Contents

Abstract iii

Acknowledgements iv

1 INTRODUCTION 1

1.1 Introduction . 1

1.2 Thesis Overview . 3

2 CATEGORY THEORY 4

2.1 Introduction . 4

2.2 Definition Of Category . 4

2.3 The Category Of Signatures 5

2.3.1 Signature . 5

2.3.2 Signature Morphism 6

2.4 The Category of Specifications 6

2.4.1 Specification . 7

2.4.2 Specification Morphisms 7

2.5 Diagrams . 7

3 SPECWARE OVERVIEW 9

3.1 What is Specware? . 9

3.2 MetaSlang . 10

3.2.1 Specs . 11

v

3.2.2 Types . 11

3.2.3 Operations(ops) and Definitions(defs) 12

3.2.4 Claims: Axioms, Conjectures, and Theorems 14

3.2.5 Lambda-Forms . 14

3.3 Specware Shell . 15

3.4 Specware and SNARK . 16

3.5 Specware and Isabelle . 16

4 ISABELLE 19

4.1 Introduction . 19

4.2 Apply-style Proofs . 20

4.2.1 apply(auto) . 20

4.2.2 apply(induct-tac x) . 20

4.2.3 apply(simp add: x1 x2) 20

5 SETUP OF SPECWARE, ISABELLE and XEMACS IN UBUNTU 22

5.1 XEmacs 21.4.21 . 22

5.2 Specware 4.2.5 . 23

5.3 Isabelle . 23

6 FUZZY SETS 24

6.1 Introduction to Fuzzy Sets . 24

6.2 Basic Concepts . 25

6.3 Fuzzy Set Operations . 27

6.3.1 Fuzzy Complement . 27

6.3.2 Fuzzy Union : t - CONORM 28

6.3.3 Fuzzy Intersection : t - NORM 29

6.3.4 Properties of Fuzzy Sets 31

6.4 Fuzzy Arithmetic . 31

6.4.1 Fuzzy Numbers . 31

vi

6.4.2 Arithmetic Operations On Intervals 32

6.4.3 Arithmetic Operations On Fuzzy Numbers 34

6.4.4 Lattice Of Fuzzy Numbers 38

6.5 Fuzzy Reasoning Operators 40

6.6 Fuzzy Set Specification . 46

6.7 Fuzzy Information Processing 49

6.7.1 Fuzzification . 50

6.7.2 Fuzzy Reasoning . 52

6.7.3 Defuzzification . 53

7 AN EXAMPLE: EDGE DETECTION ALGORITHM 55

7.1 Edge Detection Algorithm . 55

7.2 Fuzzy Edge Detection Modeling 58

7.2.1 Fuzzy Set . 59

7.2.2 Fuzzy Number (FuzzyNumber.sw) 60

7.2.3 Fuzzy Arithmetic (FuzzyArithm.sw) 61

7.2.4 Fuzzy Reasoning (FuzzyReasoning.sw) 62

7.2.5 Image (Image.sw) . 63

7.2.6 Fuzzification (Fuzzification.sw) 63

7.2.7 Triangular Fuzzification (TriFuzzify.sw) 64

7.2.8 Defuzzification (defuzzification.sw) 66

7.2.9 Fuzzy Edge (fuzzyEdge.sw) 68

7.2.10 Proving in SNARK and Isabelle 76

8 CONCLUSION 83

8.1 Conclusion . 83

8.2 Future Works . 86

Bibliography 88

vii

A Crisp To Fuzzy Mapping Table 90

B Formal Information Fusion Library Specs 1 92

C Formal Information Fusion Library Specs 2 104

D Subgoal for Theorem FuzzyEdge Which Generated by Isabelle112

viii

List of Figures

3.1 Sample spec. 11

3.2 Some type declarations. 12

3.3 Some op declarations. 12

3.4 Op declaration and definition (separate). 13

3.5 Op declaration and definition (combined). 13

3.6 Axiomatically op definiton. 13

3.7 A Theorem sample. 14

3.8 Usage of gen-obligations command. 17

3.9 Sample Specware Specification. 17

3.10 Isabelle obligation theory translated from sample Specware spec-

ification above. 18

4.1 Screenshot of XEmacs. 19

4.2 Example of a sub-goal. 20

4.3 The sub-goal in figure 4.2 is proved by apply(auto). 20

4.4 The sub-goal before induction is applied 21

4.5 The sub-goal after induction is applied 21

5.1 Command to install XEmacs. 23

5.2 Commands to install Isabelle [15]. 23

6.1 Complement of fuzzy set A. 28

6.2 Union of fuzzy sets A and B. 29

ix

6.3 Intersection of fuzzy sets A and B. 30

6.4 Addition of fuzzy sets A and B. 36

6.5 Substraction of fuzzy sets A and B. 37

6.6 Multiplication of fuzzy sets A and B. 37

6.7 Division of fuzzy sets A and B. 38

6.8 fuzzy-min of fuzzy sets A and B. 39

6.9 fuzzy-max of fuzzy sets A and B. 40

6.10 Diagram for fuzzy-set. 47

7.1 Unit Interval specification . 59

7.2 Type Fuzzy Set definition . 60

7.3 Declaration of Fuzzy Set operations 60

7.4 Definition of Fuzzy Set operations 60

7.5 Type Fuzzy Number definition 61

7.6 Definition of normality . 61

7.7 Definition of convexity . 61

7.8 Op fuzzy add declaration . 62

7.9 Op fuzzy add definition . 62

7.10 Op fuzzy min definition . 63

7.11 Declaration of fuzzy reasoning operators 63

7.12 Definition of fuzzy reasoning operators 64

7.13 Type Image definition . 64

7.14 Type Nz definition . 64

7.15 Specification of Fuzzy Set . 65

7.16 Declaration and definition of uni min and uni max 65

7.17 Triangular fuzzification op declarations 65

7.18 Definitions of tri fuzzify and tri fuzzify 2 66

7.19 Op tri fuzzify image definition 66

7.20 Op defuzzify 1 declaration and definition 67

x

7.21 Declaration and definition of operations used in defuzzify 1 . . 67

7.22 Op defuzzify 2 declaration and definition 68

7.23 Op alpha intvl declaration and definition 68

7.24 Laplacian declaration and definition as an operation 69

7.25 Ops fuzzy zero crossing 1 and fuzzy zero crossing 2 declarations

and definitions . 71

7.26 Specification of Fuzzy Variance 74

7.27 Op Fuzzy edge point declaration and definition 75

7.28 Theorem fuzzyEdge . 76

7.29 SNARK with no options. 77

7.30 SNARK with options. 77

7.31 Proof of theorem Complement 78

7.32 Proof of theorem Commutativity 78

7.33 Proof of theorem Assosiativity 79

7.34 Proof of theorem Monotonicity 79

7.35 Proof of theorem Fuzzify . 79

7.36 Proof of theorem Uni min . 80

7.37 Subgoal for Monotonicity. 80

7.38 Theorem Monotonicity proved in step 1 in Isabelle. 81

7.39 Theorem Monotonicity. 81

7.40 Theorem fuzzyEdge proving step 1 in Isabelle. 81

7.41 Theorem fuzzyEdge proving step 2 in Isabelle. 82

7.42 Other steps in Isabelle. 82

xi

List of Tables

6.1 Logical Mapping Table . 46

6.2 Arithmetic Mapping Table . 49

xii

Chapter 1

INTRODUCTION

1.1 Introduction

Among the various paradigmatic changes in science and mathematics in this

century, one such change concerns the concept of uncertainty. In science, this

change has been manifested by a gradual transition from the traditional view,

which insists that uncertainty is undesirable in science and should be avoided

by all possible means, to an alternative view, which is tolerant of uncertainty

and insists that science cannot avoid it.

According to the traditional view, science should strive for certainty in

all manifestations (precision, specificity, sharpness, consistency, etc.); hence,

uncertainty (imprecision, nonspecificity, vagueness, inconsistency, etc.) is re-

garded as unscientific. According to the alternative (modern) view, uncer-

tainty is considered essential to science; it is not only an unavoidable plague,

but it has, in fact, a great utility [1].

In order to develop an information fusion system, it is required to deal

with uncertainty in a formal way. Formal verification tools, such as theorem

provers and software development systems, help to build specifications for an

information fusion system and verify their correctness mathematically before

they are built.

1

CHAPTER 1. INTRODUCTION 2

Specware is a formal specification tool and an automated software de-

velopment system [12] developed by Kestrel Institute. This tool is used in

this thesis. It is known that building correct and clear specifications is diffi-

cult. But Specware can help by exploiting Category Theory, which includes

algebraic theories, and allowing for building specifications progressively from

smaller to larger components.

SNARK, is an automated theorem-proving program developed in Common

Lisp [16], and Isabelle is a generic proof assistant that allows mathematical

formulas to be expressed in a formal language and provides support for proving

those formulas in a logical calculus [15], Isabelle is also used in this thesis. It

will be demonstrated that a specification in Specware can be translated to Is-

abelle using the Specware interface and verified using some proving capabilities

of Isabelle.

In this thesis, fuzzy set theory is used to handle uncertainty. So fuzzy

information fusion system specifications are built. Fuzzy set, fuzzy number,

fuzzy arithmetic operations, and various fuzzification methods are specified

and stored in a specification library. The library is then used to build an edge

detection algorithm. Proof obligations are then extracted and proved using

both Isabelle and SNARK.

Why Is Fuzzy Set Used?

From the beginning of modern science until the end of the nineteenth century,

uncertainty was generally viewed as undesirable in science and the idea was

to avoid it. This attitude gradually changed with the emergence of statistical

mechanics at the beginning of the twentieth century. To deal with the unman-

ageable complexity of mechanical processes on the molecular level, statistical

mechanics resorted to the use of statistical mechanics, probability theory has

been successfully applied in many other areas of science. However, in spite of

CHAPTER 1. INTRODUCTION 3

its success, probability theory is not capable of capturing uncertainty in all its

manifestations [2]. So these limitations are part of the reason why fuzzy sets

are used in this thesis.

1.2 Thesis Overview

The thesis is organized as follows. In Chapter 2, necessary aspects of category

theory are presented. In Chapter 3, the tool Specware and the Metaslang

language are explained. In Chapter 4, theorem prover Isabelle is introduced.

In Chapter 5, the setup of Specware environment is presented. In Chapter 6,

fuzzy sets and fuzzy reasoning operators are explained. In Chapter 7, fuzzy

system modeling and an example - fuzzy edge detection - are presented. Con-

clusions and future works are proposed in Chapter 8.

Chapter 2

CATEGORY THEORY

2.1 Introduction

Category theory is a relatively young branch of mathematics, stemming from

algebraic topology, and designed to describe various structural concepts from

different mathematical fields in a uniform way. Indeed, category theory pro-

vides a bag of concepts (and theorems about those concepts) that form an

abstraction of many concrete concepts in diverse branches of mathematics, in-

cluding computing science. Hence it will come as no surprise that the concepts

of category theory form an abstraction of many concepts that play a role in

algorithmics [6]. So category theory is gracefully concise and simple language

for describing information fusion systems.

Followings include some definitions that describe Category Theory and

taken from [5]

2.2 Definition Of Category

A category C of

• a collection of Obj called C-objects;

• a collection of Arw called C-arrows;

4

CHAPTER 2. CATEGORY THEORY 5

• operations assigning to each C-arrows f a C-object dom f (the domain

of f) and a C-object cod f (the ”codomain ” of f). If a = dom f and b = cod

f this is displayed as

f : a→ b or a
f→ b

•an operation, ” ◦ ”, called composition, assigning to each pair 〈g, f〉 of C-

arrows with dom g = cod f , a C−arrow g◦f : dom f → cod g, the composite of

f and g such that the Associative Law holds : Given the configuration

a → b→ c→ d

of C − objects and C − arrows, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f

• an assignment to each C-object, b, a C-arrow, idb:b→b, called the identity

arrow on b, such that the Identity Law holds : For any C-arrows f : a → b

and g : b→ c

idb ◦ f = f and g ◦ idb = g

2.3 The Category Of Signatures

In algebraic specifications, the structure of a specification is defined in terms

of an abstract collection of values, called sorts and operations over those sorts.

This structure is called a signature. A signature describes the structure that

an implementation must have to satisfy the associated specification; however,

a signature does not specify the semantics of the specification. The semantics

are added later via axioms.

CHAPTER 2. CATEGORY THEORY 6

2.3.1 Signature

A signature Σ = 〈S,Ω〉, consists of a set S of sorts and a set Ω of operation

symbols, defined over S. Associated with each operation’s symbol is a sequence

of sorts called its rank. For example, f : s1, s2, ..., sn → s indicates that f is

the name of an n-ary function, taking arguments of sorts s1, s2, ..., sn and

producing a result of sort s. A nullary operation symbol, c :→ s is called a

constant of sort s.

For signatures, the C-arrows are called signature morphisms. Signatures

and their associated signature morphisms form the category, Sign.

2.3.2 Signature Morphism

Given two signatures Σ = 〈S,Ω〉 and Σ´ = 〈S´,Ω´〉 a signature morphism σ :

Σ → Σ´ is a pair of functions 〈σs : S → S´, σΩ : Ω → Ω´〉, mapping sorts to

sorts and operations to operations such that the sort map is compatible with

the ranks of the operations, i.e., for all operation symbols f : s1, s2, ..., sn →

s in Ω the operation symbol σΩ(f) : σs(s1), σs(s2), ..., σs(sn) → σs(s) is in

Ω´. The composition of two signature morphisms, obtained by composing the

functions comprising the signature morphisms, is also a signature morphism.

The identity signature morphism on a signature maps each sort and each

operation onto itself. Signatures and signature morphisms form a category,

Sign, where the signatures are the C-objects and the signature morphisms are

the C-arrows.

2.4 The Category of Specifications

To model the semantics, signatures are extended with axioms that define the

intended semantics of the signature operations. A signature with associated

axioms is called a specification.

CHAPTER 2. CATEGORY THEORY 7

2.4.1 Specification

A specification SP is a pair 〈Σ,Ω〉 consisting of a signature Σ = 〈S,Φ〉 and

a collection Φ of Σ-sentences (axioms).

A specification only defines the semantics required of a valid implementa-

tion. In fact, for most specifications, there are a number of implementations

that satisfy the specification.

As signatures have signature morphisms, specifications also have specifi-

cation morphisms.

2.4.2 Specification Morphisms

Specification morphisms are signature morphisms that ensure that the axioms

in the source specification are theorems (are provable from the axioms) in the

target specification. Showing that the axioms of the source specification are

theorems in the target specification is a proof obligation that must be shown

for each specification morphism. Specification and specification morphisms

enable the creation and modification of specifications that correspond to valid

signatures within the category Sign.

A specification morphism from a specification SP = 〈Σ,Φ〉 to a specifi-

cation SP´ = 〈Σ´,Φ´〉 is a signature morphism σ.Σ → Σ´ such that for every

model M ∈ Mod[SP´], M |σ ∈ Mod[SP]. The specification morphism is also

denoted by the same symbol, σ:Σ→ Σ´

2.5 Diagrams

A diagram in a category C is a collection of vertices and directed edges, con-

sistently labeled with objects and arrows of C, where ”consistently” means

that if an edge in the diagram is labeled with an arrow and has domain A and

codomain B, then the endpoints of this edge must be labeled with A and B.

CHAPTER 2. CATEGORY THEORY 8

Diagrams are often used for stating and proving properties of categori-

cal constructions. Such properties can often be expressed by saying that a

particular diagram commutes.

Chapter 3

SPECWARE OVERVIEW

3.1 What is Specware?

It is a tool for building and manipulating a collection of related specifications.

Specware can be considered [13] :

•a design tool , because it can represent and manipulate designs for com-

plex systems, software or otherwise

•a logic, because it can describe concepts in a formal language with rules

of deduction

•a programming language, because it can express programs and their prop-

erties

•a database, because it can store and manipulate collections of concepts,

facts, and relationships

It can be used to develop domain theories, develop code from specifications

and develop specifications from code [13].

Specware is designed with the idea that large and complex problems can be

specified by combining small and simple specifications. The problem specifica-

tions may be further refined into a working system by the controlled stepwise

introduction of implementation design decisions, in such a way that the refined

specifications and ultimately the working code is a provably correct refinement

9

CHAPTER 3. SPECWARE OVERVIEW 10

of the original problem specification [13]

Specware uses notions and procedures based on category theory and re-

lated mathematics to manipulate specifications [10]. The advantage of cate-

gory theory as the foundation of Specware is that it enables the production of

a well-defined stepwise refinement from an abstract specification to concrete

implementation. Specification morphisms preserve the structure of one specifi-

cation through the translation to another specification and preserve theorems

across the specifications [11].

Specware produces logical inference using external theorem provers such

as; SRI’s Snark and Isabelle. External provers are connected to Specware

through logic morphisms, which relate logics to each other. While Snark is an

automated theorem prover, Isabelle is more interactive theorem prover that

user can move forward step by step.

For this project, Specware 4.2.5 version was used.

3.2 MetaSlang

MetaSlang is the specification language of Specware. It is a version of high-

order logic like PVS1 and HOL2.

MetaSlang is a functional language which is valuable for proving prop-

erties regarding functions. It includes syntactic constituents for describing

functional semantics within a specification as well as constructs for describing

composition, refinement, code generation, and proof capabilities. Specifica-

tion constituents include types, expressions, and axioms which can be used to

describe domain-specific formalisms [14]. All about MetaSlang in this section

is a basic explanation. The Specware Language Manual contains a detailed

1PVS is a specification language integrated with support tools and a theorem prover.
For more information: http://pvs.csl.sri.com/

2HOL is a programming environment in which theorems can be proved and proof tools
implemented. For more information http://hol.sourceforge.net/

CHAPTER 3. SPECWARE OVERVIEW 11

description of the MetaSlang grammar, including a BNF description.

3.2.1 Specs

A specification is a finite presentation of a theory in higher-order logic [11].

Specifications, or specs, provide the means to describe abstract concepts of

the problem domain. A basic specification consists of a set of specification

constituents. The first one is types, which indicate a set of values syntacticcally.

The second element is operations (or ops, for short), which denote an element of

the set denoted by its type [13]. The last is axioms and definitions, which define

actions of types and operations. A spec can be expanded by importing other

specs. This process can be useful for more complicated problems. Specs are

also the objects used in morphisms which define the part-of or is-a relationships

between two specs. Morphisms allow for refinement of specs and provide the

utility to take simple abstract specifications and refine them to more concrete,

complex specifications [14].

FuzzySet = spec
declaration
...
endspec

Figure 3.1: Sample spec.

3.2.2 Types

A type is a syntactic entity that denotes a set of values. Types are collections

or sets of objects and expressions that characterize those objects. Specware

has several built-in types such as Boolean, Integer, etc. These can be used

in specifications directly. They are imported automatically for every spec by

CHAPTER 3. SPECWARE OVERVIEW 12

Specware. Besides the built-in types, users can define new types or combine

existing types to build more complex types. Some examples are shown in

Figure 3.2.

type Nz = {i:Nat | i ∼ = 0}
type Image = Integer ∗ Integer − > Nat
type Fuzzy set a = a − > Uni intvl

Figure 3.2: Some type declarations.

3.2.3 Operations(ops) and Definitions(defs)

An operation or op is a syntactic symbol accompanied by a type. An op is an

element of the set that is denoted by its type. A specification has a number

of built-in operations, such as logical connectives.

Ops can be polymorphic. While a monomorphic op denotes an element of

the set denoted by the type of the op, a polymorphic op denotes a function

that, given a set for each parameter type of the polymorphic type of the op,

returns an element of the set obtained by applying to such parameter sets the

function denoted by the type of the op [19].

% Monomorphic op
op delta : Nz
% Polymorphic op
op inf : Intvl − > Nat
op fequal : Fuzzy number ∗ Fuzzy number − > Uni intvl

Figure 3.3: Some op declarations.

The behavior and constraint of an op can be shown by definitions. If

definition is used for an op it must match the signature of the op declaration.

CHAPTER 3. SPECWARE OVERVIEW 13

Also there is a possibility to combine defs and ops using a construct. Examples

show that we can use defs and ops in a combined way.

% Op declaration
op [a] fuzzy complement : Fuzzy set a − > Fuzzy set a
% Op definition
def [a] fuzzy complement(f1) = fn d − > 1 - f1(d)

Figure 3.4: Op declaration and definition (separate).

% Op declaration and definiton
op min (x1: Nat, x2: Nat): Nat =
if x1 <= x2 then x1 else x2

Figure 3.5: Op declaration and definition (combined).

An op definition can be considered as a special notation for an axiom.

However defining ops axiomatically may not be always a good idea since an

axiom is automatically assumed to be true and has no obligations while defs

have proof obligations associated with them. So it is encouraged to use defs

as much as possible.

% Op declaration
op uni min : Uni intvl ∗ Uni intvl − > Uni intvl
% Axiomatically op definition
axiom uni min def is
fa(u1: Uni intvl, u2: Uni intvl)
uni min(u1,u2) = (if u1 <= u2 then u1 else u2)

Figure 3.6: Axiomatically op definiton.

CHAPTER 3. SPECWARE OVERVIEW 14

3.2.4 Claims: Axioms, Conjectures, and Theorems

There are three kinds of claims that are usable in Speceware: axioms, con-

jectures, and theorems. Axioms, conjectures and theorems are formulas in a

specification that use types and ops. They are a term of type Boolean.

In detail, an axiom is a logical sentence that is asserted to hold for all

the objects and functions discussed by the specification while a theorem is a

provable consequence of all the axioms of the theory. Conjectures are generated

automatically by Specware, but the user can also create conjectures as well

[14].

% Alpha-cut Theorem
theorem alpha cut closed is
fa(f:Fuzzy number, a:Uni intvl, S:Set of Nat)
(alpha cut(f, a) = S <=> (fa(d:Nat)(d in? S) =>
(ex(d1:Nat, d2:Nat)(d1<=d2) && (d1<=d) && (d<=d2))))

Figure 3.7: A Theorem sample.

3.2.5 Lambda-Forms

Lambda calculus can be used to define functions that take inputs and produces

outputs. A form used to describe a function it is called a lambda expression.

In Specware, lambda forms are represented by the symbol “fn”; the value of

a lambda-form is a partial or total function. For instance, the meaning of a

given lambda-form of type S → T is the function f mapping each inhabitant

x of S to a value y of type T, where y is the return value of x for the match

of the lambda-form. If the match accepts each x of type S, function f is total;

otherwise it is partial, and undefined for those values x rejected [13]. A simple

usage of lambda-forms can be seen below.

CHAPTER 3. SPECWARE OVERVIEW 15

op fuzzy add(f1: Fuzzy set Nat, f2: Fuzzy set Nat)(z: Nat):

Uni intvl =

sup(map (fn (x,y) -> min(f1 x, f2 y)) (fn (x,y) -> x + y = z))

3.3 Specware Shell

Specware specifications are processed in Specware Shell. Only units in spec-

ifications can be processed with commands. However, Specware shell can be

run without a text editor, it can be run on XEmacs environment. Working

on Xemacs environment has some advantages like; when an unit is processed

if an error occurs XEmacs shows where the error is. Also Xemacs has syntax

highlighting option that helps the user to edit specifications easily.

Processing a unit causes the recursive processing of the units referenced in

that unit’s term. For instance, if spec A extends spec B which in turn extends

spec C, then when A is processed, B and C are also processed. There must be

no circularities in the chain of unit dependencies [18].

When a unit is processed, processing results are saved to an internal cache

by Specware. When the user tries to get Specware to process the same unit,

Specware checks the cache which carries the unit’s identifier and avoids re-

computations if there is not any change on the file.

The Specware Shell consist of some commands that are used for basic file

operations such as cd and ls. Also there are some other commands that are

special to Specware such as show and proc.

CHAPTER 3. SPECWARE OVERVIEW 16

3.4 Specware and SNARK

SNARK (SRI’s New Automated Reasoning Kit) is an automated theorem-

proving program developed in Common Lisp. Its principal inference rules are

resolution and paramodulation. SNARK’s style of theorem proving is similar

to Otter’s [16].

Specware comes packaged with the SNARK first-order theorem prover.

In order to get SNARK to prove theorems, first the user should add proof

terms in specifications and then these specifications should be processed by

Specware.

Specware will report an error if the claim to be proved does not occur in

the spec, or if not all claims following occur in the spec before the claim to

be proved [18]. SNARK saves all information about execution process in a log

file. However, log files can be more complicated for some users, they can be

helpful to understanding why the proofs succeeded or failed.

3.5 Specware and Isabelle

Isabelle is a generic proof assistant. It allows mathematical formulas to be ex-

pressed in a formal language and provides tools for proving those formulas in

a logical calculus. The main application is the formalization of mathematical

proofs and in particular formal verification, which includes proving the cor-

rectness of computer hardware or software and proving properties of computer

languages and protocols [15].

Specware interface allows the use of Isabelle to formulate and prove obli-

gations. The interface is essentially just an emacs command that converts a

Specware spec to an Isabelle theory, along with extensions in the Specware

syntax to allow Isabelle proof scripts to be embedded in Specware specs, and

to allow the user to specify translation of Specware ops and types to existing

CHAPTER 3. SPECWARE OVERVIEW 17

Isabelle constants and types [17]. User can translate Specware declarations,

definitions, axioms and theorems to the corresponding Isabelle versions by

using gen-obligations command.

* gen-obligations FuzzyEdgeDetection#FUZZY NUMBER
"/home/user/Specware-4-2-5/Codes/Isa/
FuzzyEdgeDetection FUZZY NUMBER.thy"

Figure 3.8: Usage of gen-obligations command.

type Fuzzy number = Fuzzy set Nat
type Set of Nat = FiniteSet Nat
axiom normality is
fa(f:Fuzzy number)
height(f) = 1
theorem alpha cut closed is
fa(f:Fuzzy number, a:Uni intvl, S:Set of Nat)
(alpha cut(f, a) = S <=> (fa(d:Nat)(d in? S) =>
(ex(d1:Nat, d2:Nat)(d1<=d2) && (d1<=d) && (d<=d2))))

Figure 3.9: Sample Specware Specification.

A Specware definition may translate into one of four different kinds of

Isabelle definitions: defs, recdefs and the newer funs and functions. Simple

recursion on coproduct constructors translates to fun, but more complicated

recursion is usually translated to fun. Some recursion still translates to recdef

because the fun and function support is new, but the user can force translation

to function. Non-recursive functions are translated to defs, except in some

cases they are translated to fun which allows more pattern matching [17].

CHAPTER 3. SPECWARE OVERVIEW 18

types Fuzzy number = "nat Fuzzy set"
types Set of Nat = "nat Set FiniteSet"
theorem normality Obligation subtype:
\<lbrakk>Fun PR between zero one p (f::nat \<Rightarrow>
Uni intvl);
\<forall>(x::int).
x = int (height f)
\<longrightarrow> between zero one p (nat x) \<and> x
\<ge> 0\<rbrakk> \<Longrightarrow>
height f \<ge> 0"
by auto
axioms normality:
"\<lbrakk>Fun PR between zero one p f\<rbrakk>
\<Longrightarrow> height f = 1"
theorem alpha cut closed:
"\<lbrakk>Fun PR between zero one p (f::nat \<Rightarrow>
Uni intvl); between zero one p (a::nat); finite
S\<rbrakk> \<Longrightarrow> (alpha cut(f, a) =
(S::Set of Nat)) = (\<forall>(d::nat). d \<in> S
\<longrightarrow> (\<exists>(d1::nat) (d2::nat). d1
\<le> d2 \<and> (d1 \<le> d \<and> d \<le> d2)))"

Figure 3.10: Isabelle obligation theory translated from sample Specware spec-
ification above.

Chapter 4

ISABELLE

4.1 Introduction

Isabelle and Specware can be run separately under their own Xemacs jobs.

However, it is possible to run them under the same XEmacs. At the present

time, Specware and Isabelle cannot be run together under Windows. This

only can be done under Linux by using IsabelleSpecware command.

Figure 4.1: Screenshot of XEmacs.

Isabelle has two proof styles. The first is Apply-style Proofs and the other

is Structured Isar Proofs.

19

CHAPTER 4. ISABELLE 20

4.2 Apply-style Proofs

4.2.1 apply(auto)

This command tells Isabelle to apply a proof strategy called auto to all sub-

goals. Essentially, auto tries to simplify the subgoals [8]. Figure shows a

sample proof that is proved with apply(auto).

Figure 4.2: Example of a sub-goal.

Figure 4.3: The sub-goal in figure 4.2 is proved by apply(auto).

4.2.2 apply(induct-tac x)

This command tells Isabelle to apply a proof strategy called induct tac to

perform induction to the variable x. Figure 4.4 shows an example of sub-goals

in Isabelle before induction is applied, while Figure 4.5 shows an example of

induct tac being applied to the variable a.

4.2.3 apply(simp add: x1 x2)

This command tells Isabelle to apply a simplification proof strategy by adding

x1 and x2, which are rules. Also there is another modifier: del. Modifier add

can be changed to modifier del to delete simplification rules.

CHAPTER 4. ISABELLE 21

Figure 4.4: The sub-goal before induction is applied

Figure 4.5: The sub-goal after induction is applied

Chapter 5

SETUP OF SPECWARE,

ISABELLE and XEMACS IN

UBUNTU

To use Specware and Isabelle under same XEmacs, we need to work under a

Linux operating system. In this work the choice was UBUNTU 9.04. Specware

and Isabelle development environment requires the following software installed.

• Specware 4.2.5

• Isabelle 2008

• XEmacs 21.4.21

5.1 XEmacs 21.4.21

XEmacs can be installed by using the apt-get command in Ubuntu. It is in-

stalled automatically. But there must be an internet connection since XEmacs

must be downloaded before the installing process. The figure below shows the

command line.

22

CHAPTER 5. SETUP OF SPECWARE, ISABELLE AND XEMACS IN UBUNTU23

keskemal@ubuntu:∼$ sudo apt-get install xemacs21

Figure 5.1: Command to install XEmacs.

5.2 Specware 4.2.5

Specware installation is similar to install any software in Windows. Just exe-

cute setuplinux.bin and follow the instructions.

5.3 Isabelle

The following files are required for the Isabelle 2008 installation:

• Isabelle2008.tar.gz

• ProofGeneral.tar.gz

• Polyml x86-linux.tar.gz

• HOL x86-linux.tar.gz

Installation of Isabelle/HOL on Linux (x86 and x86 64) works by down-

loading and unpacking the relevant packages. In the subsequent example the

installation location is /usr/local, but any other directory works as well [15]:

Figure 5.2: Commands to install Isabelle [15].

Chapter 6

FUZZY SETS

6.1 Introduction to Fuzzy Sets

In classical sets the transition for an element between membership and non-

membership in the universe of a given set is abrupt. While the transition for

an element that is in the universe of fuzzy sets can be gradual. This transition

takes different degrees of membership that shows the boundaries of fuzzy sets

are vague and ambiguous. Hence, the membership of an element is defined by

describing the vagueness and ambiguity using the membership function. In

general, membership functions take values in the unit interval [0,1].

We can define fuzzy sets in multiple ways. In the following we show two

examples of fuzzy set definition.

Definition 1 : Fuzzy set A is a function

A : X → [0, 1]

where X is the universe of discourse.

Definition 2 : When the universe of discourse, X, is discrete and finite,

fuzzy set A is:

A =

{
µA(x1)

x1

+
µA(x2)

x2

+ · · ·
}

=

{∑
i

µA(xi)

xi

}

24

CHAPTER 6. FUZZY SETS 25

When the universe, X, is continuous and infinite the fuzzy set A is:

A =

{∫
µA(x)

x

}
The ”+” sign in the first notation and the integral sign in the second

notation represent the function-theoretic union.

6.2 Basic Concepts

One of the most important concepts of fuzzy sets is the concept of an α - cut.

Definition of α - cut is

αA = {x|µA(x) ≥ α}

where 0 ≤ α ≤ 1. In the definition, µA(x) denotes the membership

function and the set αA is a crisp set which derived from fuzzy set A. Any

element x from αA (i.e. x ∈α A) that is greater than or equal to the value α

has a grade of membership in fuzzy set A .

One other concept is strong α - cut. Definition of strong α - cut is

α+A = {x|µA(x) > α}

Examples for α - cut and strong α - cut.

Let us consider an universe X = {a, b, c, d} and a fuzzy set A on this

universe.

A =

{
1

a
+

0.5

b
+

0.2

c
+

0.8

d

}
Let us define α - cut values: α = 0, 0.4, 0.5, 0.8.

0A = {a, b, c, d} 0+A = {a, b, c, d}
0.4A = {a, b, d} 0.4+A = {a, b, d}
0.5A = {a, b, d} 0.5+A = {a, d}
0.8A = {a, d} 0.8+A = {a}

CHAPTER 6. FUZZY SETS 26

The next concept support is the α - cut set of 0A. Symbolically,

supp(A) =0+ A = {x ∈ X|A(x) > 0}

where α = 0. As seen from the definition, it contains all elements in A,

except zero. Clearly, the support of A is exactly the same as the strong α -

cut of A for α = 0.

Another important concept is core. Core of A contains all elements for

which the degree of membership is 1 in A.

core(A) =1 A = {x ∈ X|A(x) = 1}

The largest value of α for which the α - cut is not empty is called the

height of fuzzy set A.

h(A) = supx∈XA(x)

If the height of fuzzy set A equals to one (i.e. h(A) = 1), fuzzy set A is

called normal, otherwise it is called subnormal.

If for any elements x, y, z in fuzzy set A, the relation z < y < x implies

that

µA(y) ≥ min [µA(z), µA(x)]

then A is a convex fuzzy set for x, y, z ∈ R.

Lastly, three basic operations in crisp sets can be generalized as standard

fuzzy set operations. These are complement, intersection and union.

The most natural way to express standard complement is

Ā(x) = 1− A(x)

for all x ∈ X.

The standard intersection, denoted A∩B, can be defined by this equation

CHAPTER 6. FUZZY SETS 27

(A ∩B)(x) = min [A(x), B(x)]

Also the standard union, denoted A ∪B, can be defined in the same way,

(A ∪B)(x) = max [A(x), B(x)]

For the last two equation, min and max denote the minimum and maxi-

mum operator.

6.3 Fuzzy Set Operations

In this section standard fuzzy operations (fuzzy complement, intersection and

union) are introduced.

6.3.1 Fuzzy Complement

Let A is a fuzzy set defined on a universal set X, its complement Ā is another

fuzzy set on X such that for each x ∈ X , A(x) denotes the degree to which x

belongs to A while Ā(x) denotes the degree to which x does not belong to A.

Ā(x) = 1− A(x)

for all x ∈ X.

Fuzzy sets overlap their complements as seen from figure 6.1. When a

member belongs to the fuzzy set A with the degree of 0.5, then it also be-

longs to the fuzzy set Ā(x) with a degree of 0.5. This is the main difference

between fuzzy set theory and classical set theory since a set never overlaps its

complement in classical set theory.

There are two characterization theorems of fuzzy complements.

Theorem 1: Let c be a function from [0,1] to [0,1]. Then c is a fuzzy

complement (involutive) iff there exists a continuous function g from [0,1] to

R such that g(0) = 0, g is strictly increasing, and

CHAPTER 6. FUZZY SETS 28

Figure 6.1: Complement of fuzzy set A.

c(a) = g−1(g(1)− g(a))

for all a ∈ [0,1].[1]

Theorem 2: Let c be a function from [0,1] to [0,1]. Then c is a fuzzy

complement iff there exists a continuous function f from [0,1] to R such that

f(1) = 0, g is strictly decreasing, and

c(a) = f−1(f(0)− f(a))

for all a ∈ [0,1].[1]

6.3.2 Fuzzy Union : t - CONORM

Let A and B are fuzzy sets defined on a universal set X. The standard fuzzy

union of A and B , denoted by A ∪ B, is defined by using their membership

functions.

(A ∪B)(x) = max[A(x), B(x)]

for all x ∈ X.

In classical set theory, the equation

A ∪ Ā = X

CHAPTER 6. FUZZY SETS 29

is always true. However it does not hold for fuzzy sets under standard

fuzzy union. It can be seen easily that this equation is invalid for all elements

x ∈ X such that A(x) /∈ 0, 1. For example, A(x) = 0.8, then Ā = 1−0.8 = 0.2.

Hence,

(A ∪B)(x) = max[0.8, 0.2] = 0.8

If this was a classical set, x was expected a member of X with full mem-

bership (x = 1), but it is obvious that it does not hold for fuzzy sets under

standard fuzzy union.

Figure 6.2: Union of fuzzy sets A and B.

There is one characterization theorem of t-conorms.

Theorem: Let u be a binary operation on the unit interval. Then, u is

an Archimedean t-conorm if and only if there exists an increasing generator g

such that

u(a, b) = g(−1)(g(a) + g(b))

for all a, b ∈ [0, 1]. [1]

6.3.3 Fuzzy Intersection : t - NORM

Like fuzzy union, let A and B are fuzzy sets defined on a universal set X. The

standard fuzzy intersection of A and B , denoted by A∩B, is defined by using

their membership functions.

CHAPTER 6. FUZZY SETS 30

(A ∩B)(x) = min[A(x), B(x)]

for all x ∈ X.

In classical set theory, the equation

A ∩ Ā = ∅

is always true. However it does not hold for fuzzy sets under standard

fuzzy intersection. It can be seen easily that this equation is invalid for all

elements x ∈ X such that A(x) /∈ 0, 1. For example, A(x) = 0.8, then Ā =

1− 0.8 = 0.2. Hence,

(A ∩B)(x) = min[0.8, 0.2] = 0.2

If this was a classical set, x was expected a member of X with the degree of

0 (x = 0), but it is obvious that it does not hold for fuzzy sets under standard

fuzzy intersection.

Figure 6.3: Intersection of fuzzy sets A and B.

There is one characterization theorem of t-norms.

Theorem: Let i be a binary operation on the unit interval. Then, i is an

Archimedean t-norm if and only if there exists a decreasing generator f such

that

CHAPTER 6. FUZZY SETS 31

i(a, b) = f (−1)(f(a) + f(b))

for all a, b ∈ [0, 1]. [1]

6.3.4 Properties of Fuzzy Sets

Fuzzy sets follow the same properties as classical sets. The following is a list

of frequently used properties of fuzzy sets.

Commutativity A ∪B = B ∪ A

Associativity A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C

Distributivity A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Idempotency A ∪ A = A and A ∩ A = A

Identity A ∪ ∅ = A and A ∩X = A

A ∩ ∅ = ∅ and A ∪X = X

Transitivity If A ⊆ B ⊆ C, then A ⊆ C

Involution ¯̄A = A

6.4 Fuzzy Arithmetic

6.4.1 Fuzzy Numbers

A fuzzy number is described in terms of a number and a linguistic modifier

such as approximately, around, or nearly. For example around seven is fuzzy,

since it contains some numbers that are on either side of the central value

seven. The membership function decreases from 1 to 0 both sides of central

value. This kind of fuzzy sets are called fuzzy numbers. Membership functions

can be shown in the form:

CHAPTER 6. FUZZY SETS 32

A : R→ [0, 1]

Not all membership functions in this form are fuzzy numbers. In order

to qualify as a fuzzy number, a fuzzy set A on R must provide at least the

following three properties:

1. Fuzzy set A must be normal. The only condition for a fuzzy set to be

normal is its height must equal to 1.

h(A) =sup
x∈X

A(x) = 1

2. Alpha-cuts of fuzzy set A must be a closed interval for every α ∈ (0, 1].

Since α - cuts of fuzzy number are required to be closed intervals, every

fuzzy number is a convex fuzzy set. If for any elements x, y, z in fuzzy

set A, the relation z < y < x implies that

µA(y) ≥ min [µA(z), µA(x)]

then A is a convex fuzzy set for x, y, z ∈ R.

3. The support of fuzzy set A, 0+A, must be bounded.

These properties are necessary for defining meaningful arithmetic opera-

tions on fuzzy numbers.

6.4.2 Arithmetic Operations On Intervals

Fuzzy set and fuzzy number can be described by the intervals associated with

α-cuts. As a result of that, we can define arithmetic operations on fuzzy

numbers in terms of arithmetic operations on closed intervals.

Let’s consider wo interval numbers I1 and I2t

CHAPTER 6. FUZZY SETS 33

I1 = [a, b] where a ≤ b

I2 = [c, d] where c ≤ d

Denote a general arithmetic operation for these two interval numbers:

I1 ∗ I2 = [a, b] ∗ [c, d]

We can represent the basic four arithmetic interval operations using this

scheme:

[a, b] + [c, d] = [a+ c, b+ d]

[a, b]− [c, d] = [a− d, b− c]

[a, b] · [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

[a, b]÷ [c, d] = [a, b] · [1
d
,
1

c
] 0 /∈ [c, d]

α[a, b] =

 (αa, αb) for α > 0

(αa, αb) for α < 0

where ac, ad, bc, and bd are arithmetic products and 1/d and 1/c are quo-

tients.

Arithmetic operations on closed intervals satisfy some useful properties.

To overview them, let A = [a1, a2], B = [b1, b2], C = [c1, c2], 0 = [0, 0],

1 = [1, 1]. Using these symbols, the properties are formulated as follows [1]:

1. A+B = B + A

A ·B = B · A (commutativity)

2. (A+B) + C = A+ (B + C)

(A ·B) · C = A · (B · C) (associativity)

3. A = 0 + A = A+ 0

A = 1 · A = A · 1 (identity)

CHAPTER 6. FUZZY SETS 34

4. A · (B + C) ⊆ A ·B + A · C (subdistributivity)

5. If b · c ≥ 0 for every b ∈ B and c ∈ C, then A · (B +C) = A ·B +A ·C

(distributivity). Furthermore, if A = [a, a], then a · (B + C) = a ·B + a · C.

6. 0 ∈ A− A and 1 ∈ A/A.

7. If A ⊆ E and B ⊆ F , then:

A+B ⊆ E + F

A−B ⊆ E − F

A ·B ⊆ E · F

A/B ⊆ E/F (inclusion monotonicity)

6.4.3 Arithmetic Operations On Fuzzy Numbers

In order to use fuzzy numbers in practice, it is required to define usual op-

erations on fuzzy numbers, such as addition, subtraction, multiplication, and

division. From last section, it is known that fuzzy numbers can be described

by the intervals associated with α-cuts and these are all closed intervals of

real numbers. Also it is known how to apply four basic operations to closed

intervals. Hence, arithmetic operations on fuzzy numbers can be defined.

Let A and B denote two fuzzy numbers and ∗ denote any of the four basic

arithmetic operations. Then, A ∗B, by defining its α− cut, α(A ∗B), as

α(A ∗B) =α A ∗α B

for any α ∈ (0, 1]. It can also be expressed as

A ∗B = ∪
α∈[0,1]

(αA ∗α B)× α

so the result will be fuzzy number.[1]

As an example of employing equations above, let’s consider two triangular-

shape fuzzy numbers A and B defined as follows:

CHAPTER 6. FUZZY SETS 35

A(x) =

0, for x ≤ −1 and x > 3

x
2
, for − 1 ≤ x < 1

(4−x)
2
, for 1 < x ≤ 3

B(x) =

0, for x ≤ 1 and x > 5

(x+2)
2
, for 1 < x ≤ 3

(2−x)
2
, for 3 < x ≤ 5.

From these formulas, α− cuts:

αA = [αa1,
α a2]

αB = [αb1,
α b2]

Then,

A(αa1) = (αa1 + 1)/2 = α

A(αa2) = (3−α a2)/2 = α

From these equations,

αa1 = 2α− 1

αa2 = 3− 2α

Hence,

αA = [2α− 1, 3− 2α]

When the same process is applied to B we obtain

αB = [2α + 1, 5− 2α]

CHAPTER 6. FUZZY SETS 36

Figure 6.4: Addition of fuzzy sets A and B.

Using these intervals,

(A+B)(x) =

0, for x ≤ 0 and x > 8

x
4
, for 0 ≤ x < 4

(8−x)
4
, for 4 < x ≤ 8

(A−B)(x) =

0, for x ≤ −6 and x > 2

(x+6)
4
, for − 6 ≤ x < −2

(2−x)
4
, for − 2 < x ≤ 2

(A ·B)(x) =

0, for x < −5 and x ≥ 15

[3−(4−x)1/2]
2

for − 5 ≤ x < 0

(1+x)1/2

2
, for 0 ≤ x < 3

[4−(1+x)1/2]
2

, for 3 ≤ x < 15

(A/B)(x) =

0, for x ≤ −1 and x ≥ 3

(x+1)
(2−2x)

for − 1 ≤ x < 0

(5x+1)
(2x+2)

, for 0 ≤ x < 1/3

(3−x)
(2x+2)

, for 1 < x ≤ 3

The extension principle can be used to define usual operations on fuzzy num-

CHAPTER 6. FUZZY SETS 37

Figure 6.5: Substraction of fuzzy sets A and B.

Figure 6.6: Multiplication of fuzzy sets A and B.

bers. Let A and B denote two fuzzy numbers and ? denote any of the four

basic arithmetic operations. Then, A ? B is defined by the equation,

(A ? B)(z) = sup
z=x?y

min[A(x), B(y)]

for all z ∈ R. More specifically, the four arithmetic equations are defined

as:

(A+B)(z) = sup
z=x+y

min[A(x), B(y)]

CHAPTER 6. FUZZY SETS 38

Figure 6.7: Division of fuzzy sets A and B.

(A−B)(z) = sup
z=x−y

min[A(x), B(y)]

(A ·B)(z) = sup
z=x·y

min[A(x), B(y)]

(A/B)(z) = sup
z=x/y

min[A(x), B(y)]

6.4.4 Lattice Of Fuzzy Numbers

The set R of real numbers is linearly ordered. For every pair of real numbers,

x and y, either x ≤ y or y ≤ x. The pair (R, ≤) is a lattice, which is also

expressed in terms of two lattice operations,

min(x, y) =

 x if x ≤ y

y if y ≤ x

max(x, y) =

 y if x ≤ y

x if y ≤ x

CHAPTER 6. FUZZY SETS 39

for every pair x, y ∈ R. The linear ordering of real numbers does not

extend to fuzzy numbers, but fuzzy numbers can be ordered partially in a

natural way and that this partial ordering forms a distributive lattice. So

the lattice operations on fuzzy numbers can be shown as : for any two fuzzy

numbers A and B,

MIN(A,B)(z) = sup
z=min(x,y)

min[A(x), B(y)]

MAX(A,B)(z) = sup
z=max(x,y)

min[A(x), B(y)]

for all z ∈ R. The operations MIN and MAX are totally different from

Figure 6.8: fuzzy-min of fuzzy sets A and B.

the standard fuzzy intersection and union, min and max. This difference can

be seen from the following equations :

A(x) =

0, for x < −2 and x > 4

(x+2)
3
, for − 2 ≤ x ≤ 1

(4−x)
3
, for 1 ≤ x ≤ 4

B(x) =

0, for x < 1 and x > 3

x− 1, for 1 ≤ x < 2

3− x, for 2 ≤ x ≤ 3

CHAPTER 6. FUZZY SETS 40

Figure 6.9: fuzzy-max of fuzzy sets A and B.

MIN(A,B)(x) =

0, for x < −2 and x > 3

(x+2)
3

for − 2 ≤ x < 1

(4−x)
3
, for 1 < x < 2.5

3− x, for 2.5 < x ≤ 3

MAX(A,B)(x) =

0, for x < 1 and x > 4

x− 1 for 1 ≤ x ≤ 2

3− x, for 2 < x ≤ 2.5

(4−x)
3
, for 2.5 < x ≤ 4

6.5 Fuzzy Reasoning Operators

In this section basic fuzzy reasoning operators are extended from the crisp

logic. Fuzzy logic connectives such as fuzzy implication, fuzzy biimplication,

fuzzy and, fuzzy or and fuzzy negation are specified. Fuzzy equal, fuzzy less

than and equal, as well as fuzzy greater than and equal are three operators that

have been specified.

Depending on partial ordering of fuzzy numbers, sometimes two fuzzy

CHAPTER 6. FUZZY SETS 41

numbers are comparable. In many fuzzy decision problems, the output al-

ternatives are often represented in terms of fuzzy numbers. The requirement

might be to express a crisp preference of alternatives, so it might need a method

for construction a crisp total ordering of fuzzy numbers.

Numerous methods for total ordering of fuzzy numbers have been investi-

gated and suggested, but the issue of choosing a proper ordering method in a

certain circumstance is an open research. Here two methods suggested in [2]

are listed.

The first method uses Hamming Distance. For any given fuzzy numbers

A and B, the Hamming Distance, d(A,B) is defined by the formula:

d(A,B) = ∫
R
|A(x)−B(x)|dx

For any fuzzy numbers A and B, first fuzzy −min(A,B) is calculated,

which is the least upper bound in the lattice. Then the Hamming distances

d(fuzzy −min(A,B), A) and d(fuzzy −min(A,B), B) are calculated.

The compatibility of partial ordering of comparable fuzzy numbers with

the ordering defined by the Hamming distance can be proven, because if A≤̃B,

then fuzzy-min(A,B)=B and hence, A ≤ B.

Another method is based on α − cuts. Given fuzzy numbers A and B,

select a particular value of α ∈ [0, 1] and determine the α− cuts αA = [a1, a2]

and αB = [b1, b2]. Then the total ordering of two fuzzy numbers can be defined

as:

A ≤ B iff a2 ≤ b2

This definition is dependent upon the choice of a value α. It is usually

required that α > 0.5.

However, in order to do fuzzy reasoning, the whole process has to be done

in a fuzzified way, so that the fuzziness, or the level of uncertainty, can be

maintained and could be reasoned about. In other words, fuzzy logic has to

CHAPTER 6. FUZZY SETS 42

be used. Fuzzy equal, fuzzy less than and equal, as well as fuzzy greater than

and equal are three fuzzy logic operators are to be used in the approach. And

fuzzy implication, fuzzy biimplication, fuzzy and, fuzzy or and fuzzy negation

are fuzzy logical connectives that should be defined.

Each fuzzy logical operator or connective is associated with a mapping

[0, 1]2 → [0, 1]. So the truth value of a proposition is admitted as the range of

truth values. And the truth value of a combined composition can be deter-

mined from the truth values of the atomic propositions.

Definition : Let T be a t-norm. Fuzzy implication
∼⇒ is defined as

∼⇒: [0, 1]× [0, 1]→ [0, 1],

β
∼⇒ γ = sup{α ∈ [0, 1]|T (α, β) ≤ γ

Definition : Let T be continuous t-norm.

∼⇒: [0, 1]× [0, 1]→ [0, 1],

and

α
∼⇔ β = T (α

∼⇒ β, β
∼⇒ α)

are called the fuzzy implications and fuzzy biimplication, respectively, induced

by T .

This definition is motivated by the equivalence

α⇔ β ≡ (α⇒ β) ∧ (β ⇒ α)

The following theorem can make the calculation of fuzzy biimplication

easier.

Theorem : Let T be a t-norm, α, β ∈ [0, 1]. Then

α
∼⇔ β = max(α, β)

∼⇒ min(α, β)

holds.

CHAPTER 6. FUZZY SETS 43

Depending on which t-norm is used, fuzzy implication and fuzzy biimpli-

cation could be in different versions.

Assume t-norm T = TLuka, then

α
∼⇒ β = sup{γ ∈ [0, 1]|max(α + γ − 1, 0) ≤ β}

= sup{γ ∈ [0, 1]|α + γ − 1, 0 ≤ β}

= sup{γ ∈ [0, 1]|γ ≤ 1− α + β}

= min(1− α + β, 1)

which is called Lukasiewicz implication. The corresponding biimplication

is :

α
∼⇔ β = min(1−max(α, β) + min(α, β), 1)

= 1− |α− β|

Assume t-norm T = Tmin, then

α
∼⇒ β = sup{γ ∈ [0, 1]|min(α, γ) ≤ β}

=

 1, if α ≤ β

β, otherwise

which is called Gödel implication. The corresponding biimplication is :

α
∼⇔ β = max(α, β)

∼⇒ min(α, β)

=

 1, if α = β

min(α, β), otherwise

Assume t-norm T = Tprod, then

CHAPTER 6. FUZZY SETS 44

α
∼⇒ β = sup{γ ∈ [0, 1]|α · γ ≤ β}

=

β
α
, if β < α

1, otherwise

which is called Goguen implication. The corresponding biimplication is :

α
∼⇔ β = max(α, β)

∼⇒ min(α, β)

=

 1, if α = β

min(α,β)
max(α,β)

, otherwise

The basic concept of the crisp logic (classical logic or two-valued logic) is

that every proposition is either True or False. In fuzzy logic, the truth value

could be extended to a value between 0 an 1, that is [0, 1], instead of {0, 1}.

This value represents the uncertainty level of the proposition. Let Υ(φ) ∈ [0, 1]

denotes the truth value of the proposition φ. The truth values of statements

that contain quantifiers are normally determined as :

Υ(∀x : P (x)) = inf{Υ(P (x))|x}

Υ(∀x : P (x)) = sup{Υ(P (x))|x}

With the previous support, now we can consider the truth value of fuzzy

equal, fuzzy less than and equal, as well as fuzzy greater than and equal.

For two fuzzy sets, or fuzzy numbers in particular, µ and ν, the truth

value of the value of the statement ‘µ = ν’, where =̃ represents fuzzy equal,

can be defined as :

Υ(µ=̃ν) = Υ(∀x : (x ∈ µ ∼⇔ x ∈ ν))

= Υ(∀x : ((x ∈ µ ∼⇒ x ∈ ν)
∼
∧ (x ∈ ν ∼⇒ x ∈ µ))

CHAPTER 6. FUZZY SETS 45

So the truth value of µ=̃ν depends on the truth functions chosen for

the fuzzy implication
∼⇒ and the fuzzy conjunction

∼
∧. Using Lukasiewicz

implication yield :

Υ(µ=̃ν) = inf{1− |µ(x)− ν(x)||x ∈ Real}

whereas if Gödel implication is used, it will yield :

Υ(µ=̃ν) = inf{göd(µ(x), ν(x))|x ∈ Real}

where

göd(α, β) =

 1, if α = β

min(α, β), otherwise

For two fuzzy numbers µ and ν, the truth value of the statement ‘µ≥̃ν’,

where ≥̃ represents fuzzy greater than and equal, can be defined as :

Υ(µ≥̃ν) = Υ(∀x : (x ∈ ν ∼⇒ x ∈ µ))

So the truth value of µ≥̃ν depends on the truth functions chosen for the

fuzzy implication
∼⇒ . Using Lukasiewicz implication yield :

Υ(µ≥̃ν) = inf{min(1− ν(x) + µ(x), 1)|x ∈ Real}

For two fuzzy numbers µ and ν, the truth value of the statement ‘µ≤̃ν’,

where ≤̃ represents fuzzy greater than and equal, can be defined as :

Υ(µ≤̃ν) = Υ(∀x : (x ∈ µ ∼⇒ x ∈ ν))

So the truth value of µ≤̃ν depends on the truth functions chosen for the

fuzzy implication
∼⇒ . Using Lukasiewicz implication yield :

Υ(µ≤̃ν) = inf{min(1− µ(x) + ν(x), 1)|x ∈ Real}

Logical Mapping Table for Reasoning Operators gives the mapping of crisp

reasoning operators to fuzzy equivalent.

Where the truth value symbol Υ is eliminated. A complete mapping table

of crisp to fuzzy is given at the end as Appendix A.

CHAPTER 6. FUZZY SETS 46

6.6 Fuzzy Set Specification

In this work, Specware is chosen as a tool for the handling of the fuzzy un-

certainty. And since Specware requires that all functions be total, the first

definition of fuzzy set (i.e., a fuzzy set is represented as a function) in Chapter

1 is chosen for building specifications. The diagram of the specification of

fuzzy set is shown in figure 6.4.

Logical Mapping Table
CRISP FUZZY
Number Fuzzy Number (FN)
True, False [0,1]
⇒ ⇒: [0, 1]× [0, 1]→ [0, 1]

1: a⇒ b = (1, 1− a+ b)

2: a⇒ b =

{
1, if a ≤ b
b other

⇔ ⇔: [0, 1]× [0, 1]→ [0, 1]

1: a⇔ b = 1− |a− b|

2: a⇔ b =

{
1, if a = b
min(a, b) other

= =: FN × FN → [0, 1]

1: µ = v = inf {1− |µ(x)− v(x)||x ∈ R}

1: µ = v = inf {g(µ(x), v(x))||x ∈ R}

where g(a, b) =

{
1, if a = b
b other

≥ ≥: FN × FN → [0, 1]

µ ≥ v = inf {min(1− v(x) + µ(x), 1)|x ∈ R}

≤ ≤: FN × FN → [0, 1]

µ ≤ v = inf {min(1− µ(x) + v(x), 1)|x ∈ R}

Table 6.1: Logical Mapping Table

CHAPTER 6. FUZZY SETS 47

Figure 6.10: Diagram for fuzzy-set.

The spec UNI-INTVL imports REAL and introduces a new sort : Uni-

intvl, which characterizes unit interval [0, 1].

UNI INTVL = spec

import Real

op between zero one?(x:Real): Boolean =

x < one && zero <= x

type Uni intvl = (Real |

between zero one?)

FUZZY-SET is a definitional extension of the colimit of UNI-INTVL and

SET. It defines a function sort :

FUZZY SET = spec

import /Library/General/Set, UNI INTVL

type Fuzzy set a = a − > Uni intvl

CHAPTER 6. FUZZY SETS 48

where a is the type of elements in Set. In the FUZZY-SET spec, the basic fuzzy

concepts such as fuzzy complement, union, and intersection are also specified

which can also be found as Appendix B.

Fuzzy number is imported from the spec FUZZY SET. In FUZZY NUMBER

spec new type Set of Real is defined for using real numbers set.

FUZZY NUMBER = spec

import FUZZY SET

type Fuzzy number = Fuzzy set Real

type Set of Real = Set Real

In chapter 6.4, the arithmetic operations on intervals and fuzzy numbers

were discussed. In the next sections an example of fuzzy edge detection will be

given. This example deals with fuzzy numbers, so the arithmetic operations

on fuzzy numbers have to be specified. This is done in FUZZY ARITHM spec.

Fuzzy arithmetic operators are specified in this spec, which is a definitional

extension of FUZZY NUMBER, with fuzzy operations being of the following

types :

op fuzzy add : Fuzzy number * Fuzzy number -> Fuzzy number

op fuzzy sub : Fuzzy number * Fuzzy number -> Fuzzy number

op fuzzy mult: Fuzzy number * Fuzzy number -> Fuzzy number

op fuzzy div : Fuzzy number * Fuzzy number -> Fuzzy number

op fuzzy min : Fuzzy number * Fuzzy number -> Fuzzy number

op fuzzy max : Fuzzy number * Fuzzy number -> Fuzzy number

The definition of each operation is given in the spec FUZZY ARITHM, which

is included in the Appendix B.

Let A and B denote two fuzzy numbers and ∗ denote any of the four basic

arithmetic operations. Then, A ∗B is defined by the equation,

CHAPTER 6. FUZZY SETS 49

(A ∗B)(z) = sup
z=x∗y

min[A(x), B(y)]

for all z ∈ R. More specifically, the four arithmetic operations are defined

as,

(A+B)(z) = sup
z=x+y

min[A(x), B(y)]

(A−B)(z) = sup
z=x−y

min[A(x), B(y)]

(A ·B)(z) = sup
z=x·y

min[A(x), B(y)]

(A/B)(z) = sup
z=x/y

min[A(x), B(y)]

Arithmetic Mapping Table
CRISP FUZZY
Number Fuzzy Number (FN)
+ + : FN × FN → FN

(A+B)(z) = sup
z=x+y

min[A(x), B(y)],∀z ∈ R

− − : FN × FN → FN

(A−B)(z) = sup
z=x−y

min[A(x), B(y)],∀z ∈ R

· · : FN × FN → FN

(A ·B)(z) = sup
z=x·y

min[A(x), B(y)],∀z ∈ R

÷ ÷ : FN × FN → FN

(A÷B)(z) = sup
z=x÷y

min[A(x), B(y)],∀z ∈ R

Table 6.2: Arithmetic Mapping Table

Arithmetic Mapping Table gives the mapping of crisp operators to fuzzy

equivalent where ∗ represents a fuzzy operator.

6.7 Fuzzy Information Processing

Fuzzy information processing consists of three stages which are : fuzzifica-

tion, fuzzy reasoning, and defuzzification. They are explained in the following

CHAPTER 6. FUZZY SETS 50

subsections.

6.7.1 Fuzzification

There are two kinds of approaches for fuzzification. The first approach is to

fuzzify the input measurements by introducing one kind of fuzzification func-

tions to each input variable to express the associated measurement uncertainty.

The purpose of the fuzzification function is to interpret measurements of input

variables, each expressed by a real number, for instance the intensity value of

each pixel, as more realistic fuzzy approximation of the respective real num-

bers. This fuzzification function, which is also called membership function can

be of the types triangular, trapezoidal, gaussian and so on.

Another way for fuzzification is to generate several fuzzy property sets out

of the original image. For example, Dark, Normal, Bright fuzzy sets can be

generated from an image, with each pixel corresponding to a value between 0

and 1, representing the likelihood the pixel belongs to each set.

Here the first approach is chosen since the fuzzy numbers can be used in

this approach. For a given value c, the triangular fuzzy number A is defined,

such that for all x ∈ Real, A(x) satisfies the equation :

A(x) =

0, if x < c− δ

or x > c+ δ

(x−c+δ)
δ

, if c− δ ≤ x ≤ c

(c+δ−x)
δ

, if c ≤ x ≤ c+ δ

In this equation, δ represents the uncertainty level. The larger the δ, the

more uncertain the input data.

And also for a given value c, the trapezoidal fuzzy number B is defined,

such that for all x ∈ Re al, B(x) satisfies the equation :

CHAPTER 6. FUZZY SETS 51

0, if x < c− δ1 − δ2

or x > c+ δ1 + δ2

1, if x < c− δ1

or x > c+ δ1

(x−c+δ1+δ2)
δ2

, if c− δ1 − δ2 ≤ x ≤ c− δ1

(c+δ1+δ2−x)
δ2

, if c+ δ1 ≤ x ≤ c+ δ1 + δ2

In this equation, δ1,2 represents the uncertainty level. The larger δ1,2 is,

the more uncertain the input data is.

For a given value c, the Gaussian fuzzy number C is defined, such that for

all x ∈ Re al, C(x) satisfies the equation :

C(x) = exp(−(
x− µ
σ

)2)

One kind of typical input data for an information fusion system is image,

which is generally sampled into a rectangular array of pixels. Each pixel has

an x-y coordinate that corresponds to its location within the image, and an

intensity value representing brightness of a pixel.

The spec IMAGE imports INTEGER and Real, and defines a type.

IMAGE = spec

import Real

type Image = Integer * Integer -> Real

endspec

The spec FUZZIFICATION is generated by taking the colimit of IMAGE

and FUZZY REASONING, which is going to be explained in the next subsec-

tion.

CHAPTER 6. FUZZY SETS 52

FUZZIFICATION = spec

import IMAGE, FUZZY REASONING

type Nz = {i:Real | i ∼=zero}

endspec

Using the FUZZIFICATION spec, three different versions of fuzzifica-

tion are generated : TRI FUZZIFY, TRA FUZZIFY and GAUSS FUZZIFY,

representing triangular, trapezoidal and gaussian fuzzification methods. The

detailed specs are included at the end in Appendix B.

In each spec, two operations are defined. For instance in TRI FUZZIFY,

the following two operators are defined :

op tri fuzzify : Real * Nz -> Fuzzy number

op tri fuzzify 2 : Real -> Fuzzy number

where operation tri fuzzify takes a crisp number and some uncertainty

level, and generates a fuzzy triangular number. The operation tri fuzzify 2

deals with the situation when the uncertainty level is zero, which means there

is no fuzziness about the result. The latter operation is specified so that a

crisp number can also be regarded as a fuzzy number.

6.7.2 Fuzzy Reasoning

In chapter 6.5, basic fuzzy reasoning operators were extended from the crisp

logic. In order to do fuzzy reasoning, the whole reasoning process has to be

done in fuzzy logic so that the fuzziness, or the level of uncertainty, can be

maintained and could be reasoned. In another word, fuzzy logic have to be

used. Fuzzy equal, fuzzy less than and equal, as well as fuzzy greater than and

equal are three fuzzy logic operators going to be used in the approach. And

fuzzy implication, fuzzy biimplication, fuzzy and, fuzzy or and fuzzy negation

are fuzzy logical connectives that should be defined.

CHAPTER 6. FUZZY SETS 53

Each fuzzy logical operator or connective is associated with a mapping

[0, 1]2 → [0, 1]. So the truth value of a proposition is admitted as the range

of truth values. And the truth value of a combined composition can be de-

termined from the truth values of the atomic propositions. These were all

explained in details in chapter 6.5.

Fuzzy reasoning operators are specified in the spec FUZZY REASONING,

which is a definitional extension of the spec FUZZY ARITHM, with the fuzzy

operations being of the following type:

op fequal : Fuzzy number * Fuzzy number -> Uni intvl

op fgeq : Fuzzy number * Fuzzy number -> Uni intvl

op fleq : Fuzzy number * Fuzzy number -> Uni intvl

In the spec FUZZY REASONING only Lukasiewicz implication was spec-

ified. There are also other applicable versions which were explained in details,

but can be specified as a future work. The crisp to fuzzy logic table for these

reasoning operators were shown in Table 6.1.

6.7.3 Defuzzification

This is the process of calculating single-output numerical value for a fuzzy

output variable on the basis of the inferred resulting membership function for

this variable. The input in the defuzzification process is a fuzzy number and

the output is a crisp number.

There are several defuzzification methods proposed in the literature : cen-

troid calculation, which returns the center of the area under the curve of the

fuzzy number; center of maximum, which returns the average of the maximum

value of the fuzzy number; largest of maximum, and smallest of maximum. As

CHAPTER 6. FUZZY SETS 54

an example for the specifications the center of maximum method is chosen to

implement the defuzzification process.

In this method, the defuzzified value, defuzzify(F), is defined as the average

of the smallest value and the largest value, for which height(F) is 1:

Defuzzification is implemented in the spec DEFUZZIFICATION, which is

a definitional extension of the spec FUZZY NUMBER. The defuzzify operation

is defined as :

op defuzzify : Fuzzy number -> Real

defuzzify(F) =
(inf(M) + sup(M))

2

where M = an interval [z] s.t. F (z) = height(F) = 1

Another version of this method is also specified by using α− cut :

defuzzify(F) =
(inf(M) + sup(M))

2

where M = an interval [z] s.t. F (z) =α F

All specifications about this spec is also included in the Appendix B.

Chapter 7

AN EXAMPLE: EDGE

DETECTION ALGORITHM

7.1 Edge Detection Algorithm

An edge in an image could be considered as a boundary at which a significant

change of intensity, I, occurs.

Detecting an edge is very useful in object identification, because edges

represent shapes of objects. There are many algorithms for edge detection.

The objective of an edge detection algorithm is to locate the regions where the

intensity is changing rapidly. So the whole process can be decomposed into

two steps, the first is to derive edge points in an image, the second is to apply

edge detection method only to these points.

For instance, if the gradient of this signal is taken (which, in one dimension,

is just the first derivative with respect to t) the following occurs :

55

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 56

Clearly, the gradient has a large peak centered around the edge. By com-

paring the gradient to a threshold, an edge can be detected whenever the

threshold is exceeded (as shown above). In this case, the edge is found, but

the edge has become ”thick” due to the thresholding. However, since it is

known that the edge occurs at the peak, it can be localized by computing

the Laplacian (in one dimension, the second derivative with respect to t) and

finding the zero crossings.

The above figure shows the Laplacian of one-dimensional signal. As ex-

pected, the edge corresponds to a zero crossing, but other zero crossings are

also seen which correspond to small ripples in the original signal.

Here, the Laplacian-based method is used to derive edge points. Edge

points are where the second-order derivatives of the points are zero [7] . So

edge points can be searched by looking for zero-crossing points of ∇2I(x, y),

which can be calculated by the equation

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 57

∇2I(x, y) = I(x+ 1, y) + I(x− 1, y) + I(x, y + 1) + I(x, y − 1)− 4I(x, y)

In order to avoid false edge points, local variance is estimated and compared

with a threshold. The local variance can be estimated by

σ2(x, y) =
1

(2M + 1)2

x+M∑
k1=x−M

y+M∑
k2=y−M

[(I(k1, k2)−m(k1, k2)]2

where

m(x, y) =
1

(2M + 1)2

x+M∑
k1=x−M

y+M∑
k2=y−M

I(k1, k2)

with M typically chosen around 2. Since σ2(x, y) is compared with a

threshold, the scaling factor 1
(2M+1)2

can be eliminated.

Zero-crossing detection means comparing a pixel (say x, y) with the adja-

cent ones on the next row and next column. Declaring zero-crossing points as

edges results in a large number of points being declared to be edge points.

If there is an ’zero-crossing’ action, that particular pixel is accepted as one

of the

edge components, where

if pixel(x, y) < 0 and pixel(x, y + 1) > 0 or pixel(x+ 1, y) > 0,

then pixel(x, y) = zero-crossing point

else if pixel(x, y) > 0 and pixel(x, y + 1) < 0 or pixel(x+ 1, y) < 0,

then pixel(x, y) = zero-crossing point

A pixel at (x, y) satisfies an edge point if and only if the second-order

derivatives of the points are zero-crossing points and the local variance is

greater than or equal to the threshold. The illustration of this definition is

shown in figure below:

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 58

axiom edge point? def is

fa(I: Image, x: Integer, y: Integer)

(edge point?(I, x, y) <=>

(zero crossing 1(I,x,y) || zero crossing 2(I,x,y)) &&

(thrd < var(I, x, y)))

7.2 Fuzzy Edge Detection Modeling

After setting up the Specware and Isabelle environment, the following Specware

specifications were built that are needed to model Fuzzy Edge Detection.

• Fuzzy Set

• Fuzzy Number

• Fuzzy Arithmetic

• Fuzzy Reasoning

• Image

• Fuzzification

• Triangular Fuzzification

• Defuzzification

• Edge Point

• Edge and Fuzzy Edge

SNARK and Isabelle theorem provers were used to prove proof obligations.

SNARK, proves theorems by using automatic tactics, however it could prove

only simple theorems. However some options were changed. So the Isabelle

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 59

theorem prover was chosen to prove proof-obligations for all. Although most

of proof-obligations could be proved by Isabelle, one of the theorems about

FuzzyEdgeDetection still could not be proved.

Since Specware has not provided Real numbers library, it is needed to

define Real numbers as Natural numbers in specifications.

Real Number, [0, 1]

Natural Numbers, [0, 100]

7.2.1 Fuzzy Set

Fuzzy set constitutes the base of a fuzzy system. Unit interval is needed to

define fuzzy set. So UNI INTVL spec is as follows:

UNI INTVL = spec
op between zero one?(x:Nat): Boolean =
x < 100 && 0 <= x
type Uni intvl = (Nat | between zero one?)
endspec

Figure 7.1: Unit Interval specification

Here, operation between zero one? is a boolean function; it returns true

if number x is between 0 and 100. Otherwise it returns false. Using this

operation a new type Uni intvl was built. It is a set that includes natural

numbers only between 0 and 100.

Hence, fuzzy set is declared as a type by importing FiniteSet and UNI INTVL.

It consists of a finite set and creates a new set in Uni intvl as shown in figure

7.2. Here a denotes a finite set.

Fuzzy set operations - fuzzy complement, intersection, union, alpha-cut,

and height - are declared as operations as shown in figure 7.3.

Fuzzy set operations are defined in figure 7.4. They are binary operations

on the unit interval.

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 60

import /Library/General/FiniteSet, UNI INTVL
%% Fuzzy set declaration as a type
type Fuzzy set a = a -> Uni intvl

Figure 7.2: Type Fuzzy Set definition

op [a] fuzzy complement : Fuzzy set a -> Fuzzy set a
op [a] t norm : Fuzzy set a * Fuzzy set a -> Fuzzy set a
op [a] t conorm : Fuzzy set a * Fuzzy set a -> Fuzzy set a
op [a] alpha cut : Fuzzy set a * Uni intvl -> FiniteSet a

Figure 7.3: Declaration of Fuzzy Set operations

7.2.2 Fuzzy Number (FuzzyNumber.sw)

Fuzzy number is declared as a type by importing FUZZY SET as shown in

figure 7.5. A fuzzy number is a function, thus the type of fuzzy numbers is a

type of functions.

When the height of fuzzy number is equal to 1 it is normal. Since unit

interval was defined as a set of numbers between 0 and 100, 100 is used instead

of 1 to denote the full membership.

Also convexity can be defined as in figure 7.7.

def [a] fuzzy complement(f1) = fn d -> 100 - f1(d)
def [a] t norm(f1, f2) = fn d -> min(f1(d), f2(d))
def [a] t conorm (f1, f2) = fn d -> max(f1(d), f2(d))
def [a] alpha cut (f, a) = fn d -> a <= f(d)
def [a] height(f: Fuzzy set a): Uni intvl =
the(h) (fa(x: a) f x <= h) && (ex(x: a) f x = h)

Figure 7.4: Definition of Fuzzy Set operations

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 61

import FUZZY SET
type Fuzzy number = Fuzzy set Nat

Figure 7.5: Type Fuzzy Number definition

axiom normality is
fa(f:Fuzzy number)
height(f) = 100

Figure 7.6: Definition of normality

7.2.3 Fuzzy Arithmetic (FuzzyArithm.sw)

In this specification, arithmetic operations (addition, substraction, multiplica-

tion, division) on fuzzy numbers are declared and defined. Fuzzy number spec-

ification is required to define arithmetic operations, so first FUZZY NUMBER

spec is imported. Fuzzy addition is declared as an operation that consists of

two fuzzy numbers and it yields a fuzzy number. Fuzzy addition declaration

is shown in figure 7.8. Other operations are declared in a similar way.

Definitions of these operations are specified following the second method

suggested by Klir. Here the fuzzy numbers are represented by continuous

membership functions.

? in z = x?y equation denotes any of the four basic arithmetic operations.

axiom convexity is
fa(f:Fuzzy number, x1:Nat, x2:Nat, lamd: Uni intvl)
f(lamd * x1) + ((100 - lamd) * x2) >= min(f(x1), f(x2))

Figure 7.7: Definition of convexity

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 62

%% FUZZY NUMBER spec is imported.
import FUZZY NUMBER
%% Fuzzy addition declaration
op fuzzy add : Fuzzy number * Fuzzy number -> Fuzzy number
%% Substraction, Multiplication, and Division are declared
by same way.

Figure 7.8: Op fuzzy add declaration

axiom fuzzy add def is
fa(f1:Fuzzy number, f2:Fuzzy number, x:Nat, y:Nat, z:Nat,
a:Uni intvl)
fuzzy add(f1, f2)(z) = a <=> z=x+y => (f1(x) <= a || f2(y) <=
a) &&
(ex(f1:Fuzzy number, f2:Fuzzy number, x:Nat, y:Nat, z:Nat,
a:Uni intvl)
z=x+y && ((f1(x) = a && a <= f2(y)) || (f2(y) = a && a <=
f1(x))))

Figure 7.9: Op fuzzy add definition

So changing all z = x + y to z = x− y, z = x ∗ y, and x = z ∗ y in specifica-

tion above yields other operations on fuzzy numbers. These specifications are

available in the appendix.

Lattice operations on fuzzy numbers can be specified as figure 7.10.

7.2.4 Fuzzy Reasoning (FuzzyReasoning.sw)

Fuzzy equal, fuzzy less than and equal, as well as fuzzy greater than and equal

are three operators that have been specified in this part. They are declared as

operations such that each operation consists of two fuzzy number and yields

a number in unit interval.

Definitions for these three operations are shown in figure 7.12.

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 63

axiom fuzzy min def is
fa(f1:Fuzzy number, f2:Fuzzy number, x:Nat, y:Nat, z:Nat,
a:Uni intvl)
fuzzy min(f1, f2)(z) = a <=> z= min(x,y) => (f1(x) <= a ||
f2(y) <= a) &&
(ex(f1:Fuzzy number, f2:Fuzzy number, x:Nat, y:Nat, z:Nat,
a:Uni intvl)
z= min(x,y) && ((f1(x) = a && a <= f2(y)) || (f2(y) = a && a
<= f1(x))))

Figure 7.10: Op fuzzy min definition

op fequal : Fuzzy number * Fuzzy number -> Uni intvl
op fgeq : Fuzzy number * Fuzzy number -> Uni intvl
op fleq : Fuzzy number * Fuzzy number -> Uni intvl

Figure 7.11: Declaration of fuzzy reasoning operators

7.2.5 Image (Image.sw)

A type named image is declared such that it consists of pixels, each including

two integers plus a natural number. The two integer numbers such as x, and

y denote pixel of an image. The intensity is represented by a natural number.

Type declaration for image can be seen in figure 7.13.

7.2.6 Fuzzification (Fuzzification.sw)

In this specification, IMAGE and FUZZY REASONING are imported and a

type named Nz is declared which is a set of natural numbers except zero. This

spec is written to be used in the fuzzification method (triangular, trapezoidal,

gaussian) specifications. The Fuzzification spec is shown in Figure 7.14.

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 64

axiom fequal def is
fa(f1:Fuzzy number, f2:Fuzzy number, x:Nat)
fequal(f1, f2) = inf (100 - (abs(f1(x) - f2(x))))
axiom fgeq def is
fa(f1:Fuzzy number, f2:Fuzzy number, x:Nat)
fgeq(f1, f2) = inf (min ((100 - f1(x) + f2(x)),100))
axiom fleq def is
fa(f1:Fuzzy number, f2:Fuzzy number, x:Nat)
fleq(f1, f2) = inf (min ((100 - f2(x) + f1(x)),100))

Figure 7.12: Definition of fuzzy reasoning operators

IMAGE = spec
type Image = Integer * Integer -> Nat
endspec

Figure 7.13: Type Image definition

7.2.7 Triangular Fuzzification (TriFuzzify.sw)

Triangular fuzzification is specified by importing FUZZIFICATION. A type

named Tri fuzzy image is declared as shown in figure 7.15. This type denotes

triangular fuzzified images such that two integers denote a pixel with a fuzzy

number representing the fuzzy intensity of the pixel.

Minimum and maximum as lattice operations on unit interval are defined

next.

FUZZIFICATION = spec
import IMAGE, FUZZY REASONING
type Nz = {i:Nat | i∼=0}
endspec

Figure 7.14: Type Nz definition

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 65

import FUZZIFICATION
type Tri fuzzy image = Integer * Integer -> Fuzzy number

Figure 7.15: Specification of Fuzzy Set

op uni min : Uni intvl * Uni intvl -> Uni intvl
op uni max : Uni intvl * Uni intvl -> Uni intvl
def uni min(u1,u2) = if u1 <= u2 then u1 else u2
def uni max(u1,u2) = if u2 <= u1 then u2 else u1

Figure 7.16: Declaration and definition of uni min and uni max

To generate a triangular membership function for each crisp value, an

operation named tri fuzzify is defined as shown in figure 7.17. The uncertainty

level(delta) is given as an operation (constant). Definition of tri fuzzify 2 deals

with the situation when uncertainty level is zero.

op tri fuzzify : Nat * Nz -> Fuzzy number
op tri fuzzify 2 : Nat -> Fuzzy number
op tri fuzzify image : Image * Nz -> Tri fuzzy image
op fuzzify : Nat * Nz -> Fuzzy number
op fuzzify 1 : Nat * Nz -> Fuzzy number
op delta : Nz

Figure 7.17: Triangular fuzzification op declarations

For a given value c, the triangular fuzzy number A is defined, such that

for all z ∈ R, A(z) satisfies the equation;

A(z) =

0, if z < c− δ or z > c+ δ

(z−c+δ)
δ

, if c− δ ≤ z ≤ c

(c+δ−z)
δ

, if c ≤ z ≤ c+ δ

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 66

Specifications for tri fuzzify, and tri fuzzify 2 are shown in figure 7.18.

axiom tri fuzzify def is
fa(e: Nat, f: Fuzzy number)
(tri fuzzify(e, delta) = f <=>
(fa(x: Nat)(x < (e - delta) || (e + delta) < x <=>
f(x) = 0 || (e - delta) <= x && x <= e <=>
f(x) = div((x - e + delta), (delta)) || e <= x && x <=
(e + delta) <=>
f(x) = div((e - x + delta), (delta)))))

axiom tri fuzzify 2 def is
fa(e: Nat, f: Fuzzy number)
(tri fuzzify 2(e) = f <=>
(fa(x: Nat)(x < e || e < x <=>
f(x) = 0 || x <= e && e <= x <=>
f(x) = 1)))

Figure 7.18: Definitions of tri fuzzify and tri fuzzify 2

Operation tri fuzzify image yields fuzzy images that have triangular mem-

bership degrees in type tri fuzzy image.

axiom tri fuzzify image def is
fa(I: Image, F:Tri fuzzy image)
(tri fuzzify image(I, delta) = F <=> (fa(x: Integer, y: Integer)
(F(x,y) = tri fuzzify(I(x, y), delta))))

Figure 7.19: Op tri fuzzify image definition

In order to use the triangular fuzzy numbers, the arithmetic equations on

necessary operations were given subsection 7.2.3.

7.2.8 Defuzzification (defuzzification.sw)

The defuzzify operation is defined as :

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 67

defuzzify(F) =
(inf(M) + sup(M))

2

where M = an interval [z] s.t. F (z) = height(F) = 1

Hence, specification of defuzzification is:

op defuzzify 1 : Fuzzy number -> Nat
def defuzzify 1(F) = div((inf(height intvl(F)) +
sup(height intvl(F))),(1 + 1))

Figure 7.20: Op defuzzify 1 declaration and definition

Here, inf and sup denote infimum and supremum. height intvl is an oper-

ation takes a fuzzy number and yields a set of natural numbers. Specifications

for inf, sup and height intvl can be seen in figure 7.21.

op inf : Intvl -> Nat
op sup : Intvl -> Nat
op height intvl : Fuzzy number -> Intvl
axiom inf def is
fa(I: Intvl, a: Nat, x: Nat)
(inf(I) = a <=>
(x in? I) => a <= x)
axiom sup def is
fa(I: Intvl, a: Nat, x: Nat)
(sup(I) = a <=>
(x in? I) => x <= a)
axiom height intvl def is
fa(F: Fuzzy number, I: Intvl, x: Nat)
(height intvl(F) = I <=>
F(x) = 100 <=> (x in? I))

Figure 7.21: Declaration and definition of operations used in defuzzify 1

Another version of defuzzification is also specified by using α− cut :

defuzzify(F) =
(inf(M) + sup(M))

2

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 68

where M = an interval [z] s.t. F (z) =α F

Hence,

op defuzzify 2 : Fuzzy number -> Nat
def defuzzify 2(F) = div((inf(alpha intvl(F))+
sup(alpha intvl(F))),(1 + 1))

Figure 7.22: Op defuzzify 2 declaration and definition

Specifications for inf and sup are same as above. alpha intvl definition is

shown in figure 7.23.

op alpha intvl : Fuzzy number -> Intvl
op alpha : Uni intvl %% alpha is constant
axiom alpha intvl def is
fa(F: Fuzzy number, I: Intvl, x: Nat)
(alpha intvl(F) = I <=>
F(x) = alpha <=> (x in? I))

Figure 7.23: Op alpha intvl declaration and definition

7.2.9 Fuzzy Edge (fuzzyEdge.sw)

In this part of specifications, Laplacian, zerocrossing and local variance are

formulated and defined according to the arithmetic operations of triangular

fuzzy numbers. The first part which has to be defined in the definition of

fuzzy edge point is the Laplacian part. Since Laplacian is;

∇2I(x, y) = I(x+ 1, y) + I(x− 1, y) + I(x, y + 1) + I(x, y − 1)− 4I(x, y)

Hence, Laplacian is specified like in figure 7.24.

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 69

op flap : Tri fuzzy image * Integer * Integer -> Fuzzy number

axiom flap def is
fa(F: Tri fuzzy image, x: Integer, y: Integer)
flap(F, x, y) =
fuzzy sub (fuzzy add (fuzzy add (F((x+1), y),
F((x-1), y)),
fuzzy add (F(x, (y+1)),
F(x, (y-1)))),
fuzzy add (fuzzy add (F(x,y), F(x,y)),
fuzzy add (F(x,y), F(x,y))))

Figure 7.24: Laplacian declaration and definition as an operation

In order to explain the definition of flap, it is decomposed into parts which

are named as follows, and then the arithmetic operation definitions are sub-

stituted into particular parts.

L1 = F ((x+ 1), y)

L2 = F ((x− 1), y)

L3 = F (x, (y + 1))

L4 = F (x, (y − 1))

L5 = F (x, y)

L12 = fuzzy add(F ((x+ 1), y), F ((x− 1), y))

L34 = fuzzy add(F (x, (y + 1)), F (x, (y − 1)))

L1234 = fuzzy add(L12, L34)

L6 = fuzzy mult(4, L5)

flap = fuzzy sub(L1234, L6)

After separating each part of the definition, the definition of fuzzy Laplacian

operator can be substituted into the particular parts. Arithmetic equations of

flap:

µL12
(z) = µL1

(z)+̃µL2
(z)

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 70

µL12
(z) =

0, if z < L1 + L2 − 2δ or z > L1 + L2 + 2δ

z−(L1+L2)+2δ
2δ

, if L1 + L2 − 2δ ≤ z ≤ L1 + L2

(L1+L2+2δ−z)
2δ

, if L1 + L2 ≤ z ≤ L1 + L2 + 2δ

µL34
(z) = µL3

(z)+̃µL4
(z)

µL34
(z) =

0, if z < L3 + L4 − 2δ or z > L3 + L4 + 2δ

z−(L3+L4)+2δ
2δ

, if L3 + L4 − 2δ ≤ z ≤ L3 + L4

(L3+L4+2δ−z)
2δ

, if L3 + L4 ≤ z ≤ L3 + L4 + 2δ

µL1234
(z) = µL12

(z)+̃µL34
(z)

µL1234
(z) =

0, if z < L1 + L2 + L3 + L4 − 4δ

or z > L1 + L2 + L3 + L4 + 4δ

z−(L1+L2+L3+L4)+4δ
4δ

,
if L1 + L2 + L3 + L4 − 4δ ≤ z ≤

L1 + L2 + L3 + L4

(L1+L2+L3+L4+4δ−z)
4δ

,
if L1 + L2 + L3 + L4 ≤ z ≤

L1 + L2 + L3 + L4 + 4δ

µL6
(z) = 4∗̃µL5

(z)

µL6
(z) =

0, if z < 4(L5 − δ)

or z > 4(L5 + δ)

z−4(L5−δ)
4(δ)

, if 4(L5 − δ) ≤ z ≤ 4(L5)

4(L5+δ)−z
4(δ)

, if 4(L5) ≤ z ≤ 4(L5 + δ)

µflap(z) = µL1234
(z)−̃µL6

(z)

µflap(z) =

0, if z < L1 + L2 + L3 + L4 − 4L5 − 8δ

or z > L1 + L2 + L3 + L4 − 4L5 + 8δ

z−(L1+L2+L3+L4−4L5−8δ)
8δ

,
if L1 + L2 + L3 + L4 − 4L5 − 8δ

≤ z ≤ L1 + L2 + L3 + L4 − 4L5

L1+L2+L3+L4−4L5+8δ−z
8δ

,
if L1 + L2 + L3 + L4 − 4L5

≤ z ≤ L1 + L2 + L3 + L4 + 4L5 + 8δ

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 71

Zero-crossing detection means comparing a pixel (say (x, y)) with the

adjacent ones on the next row and next column. Declaring zero-crossing

points as edge results in a large number of points being declared to be edge

points. In the specs, zero-crossing is divided into two parts; zero crossing 1

and zero crossing 2, which are fuzzified as shown in figure 7.25.

op fuzzy zero crossing 1 :
Tri fuzzy image * Integer * Integer -> Uni intvl
axiom fuzzy zero crossing 1 def is
fa(F: Tri fuzzy image, x: Integer, y: Integer)
(fuzzy zero crossing 1(F, x, y) =
(uni min (fleq (flap(F, x, y), tri fuzzify(0, delta)),
(uni max (fgeq (flap(F, x, (y+1)), tri fuzzify(0,
delta)),
fgeq (flap(F, (x+1), y), tri fuzzify(0, delta)))))))

op fuzzy zero crossing 2 :
Tri fuzzy image * Integer * Integer -> Uni intvl
axiom fuzzy zero crossing 2 def is
fa(F: Tri fuzzy image, x: Integer, y: Integer)
(fuzzy zero crossing 2(F, x, y) =
(uni min (fgeq (flap(F, x, y), tri fuzzify(0, delta)),
(uni max (fleq (flap(F, x, (y+1)), tri fuzzify(0,
delta)),
fleq (flap(F, (x+1), y), tri fuzzify(0, delta)))))))

Figure 7.25: Ops fuzzy zero crossing 1 and fuzzy zero crossing 2 declarations
and definitions

For fuzzy zero crossing 1:

µflap(z)≤̃µzero(z) = inf{min(1 − µflap(z) + µzero(z), 1)|z ∈ Real} which

has Tri fuzzy image as (F, x, y).

Since µflap(z), µzero(z) are fuzzy numbers, it is obvious that the result will

be

(1 − µflap(z) + µzero(z)), if (1 − µflap(z) + µzero(z)) is named as l1, then

for Tri fuzzy image (F, x, y),

µflap(z)≤̃µzero(z) ≡ l1

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 72

µflap(z)≥̃µzero(z) = inf{min(1 − µzero(z) + µflap(z), 1)|z ∈ Real} which

has Tri fuzzy image as (F, x, y + 1).

Since µflap(z), µzero(z) are fuzzy numbers, it is obvious that the result will

be

(1 − µzero(z) + µflap(z)), if (1 − µzero(z) + µflap(z)) is named as l2, then

for Tri fuzzy image (F, x, y + 1),

µflap(z)≥̃µzero(z) ≡ l2

µflap(z)≥̃µzero(z) = inf{min(1 − µzero(z) + µflap(z), 1)|z ∈ Real} which

has Tri fuzzy image as (F, x+ 1, y).

Since µflap(z), µzero(z) are fuzzy numbers, it is obvious that the result will

be

(1 − µzero(z) + µflap(z)), if (1 − µzero(z) + µflap(z)) is named as l3, then

for Tri fuzzy image (F, x+ 1, y),

µflap(z)≥̃µzero(z) ≡ l3

and it is known from the specs that

op uni min : Uni intvl, Uni intvl → Uni intvl

op uni max: Uni intvl, Uni intvl → Uni intvl

The notation ∧̃ ≡ uni min and ∨̃ ≡ uni max are used for the operators

above.

∧̃ : [0, 1]× [0, 1]→ [0, 1]

a∧̃b = min(a, b)

∨̃ : [0, 1]× [0, 1]→ [0, 1]

a∨̃b = max(a, b)

So, fuzzy zero crossing 1 can be written as

fuzzy zero crossing 1(F, x, y) = l1∧̃(l2∨̃l3), if (l2∨̃l3) ≡ l4 then

fuzzy zero crossing 1(F, x, y) = min(l1, (max(l2, l3) = min(l1, l4) = t1

And for fuzzy zero crossing 2

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 73

µflap(z)≥̃µzero(z) = inf{min(1 − µzero(z) + µflap(z), 1)|z ∈ Real} which

has Tri fuzzy image as (F, x, y).

Since µflap(z), µzero(z) are fuzzy numbers, it is obvious that the result will

be

(1 − µzero(z) + µflap(z)), if (1 − µzero(z) + µflap(z)) is named as g1, then

for Tri fuzzy image (F, x, y),

µflap(z)≥̃µzero(z) ≡ g1

µflap(z)≤̃µzero(z) = inf{min(1 − µflap(z) + µzero(z), 1)|z ∈ Real} which

has Tri fuzzy image as (F, x, y + 1).

Since µflap(z), µzero(z) are fuzzy numbers, it is obvious that the result will

be

(1 − µflap(z) + µzero(z)), if (1 − µflap(z) + µzero(z)) is named as g2, then

for Tri fuzzy image (F, x, y + 1),

µflap(z)≤̃µzero(z) ≡ g2

µflap(z)≤̃µzero(z) = inf{min(1 − µflap(z) + µzero(z), 1)|z ∈ Real} which

has Tri fuzzy image as (F, x+ 1, y).

Since µflap(z), µzero(z) are fuzzy numbers, it is obvious that the result will

be

(1 − µflap(z) + µzero(z)), if (1 − µflap(z) + µzero(z)) is named as g3, then

for Tri fuzzy image (F, x+ 1, y),

µflap(z)≤̃µzero(z) ≡ g3

So, fuzzy zero crossing 2 can be written as

fuzzyzerocrossing2(F, x, y) = g1∧̃(g2∨̃g3), if (g2∨̃g3) ≡ g4 then

fuzzy zero crossing 2(F, x, y) = min(g1, (max(g2, g3) = min(g1, g4) = t2

Fuzzy variance part consists of five operations. They are declared in figure

7.26.

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 74

op fvar : Tri fuzzy image * Integer * Integer -> Fuzzy number
op fysum : Tri fuzzy image * Integer * Integer -> Fuzzy number
op felmt : Tri fuzzy image * Integer * Integer -> Fuzzy number
op fm : Tri fuzzy image * Integer * Integer -> Fuzzy number
op fsub : Tri fuzzy image * Integer * Integer -> Fuzzy number

Figure 7.26: Specification of Fuzzy Variance

The local variance is

σ2(x, y) =
1

(2M + 1)2

x+M∑
k1=x−M

y+M∑
k2=y−M

[(I(k1, k2)−m(k1, k2)]2

where

m(x, y) =
1

(2M + 1)2

x+M∑
k1=x−M

y+M∑
k2=y−M

I(k1, k2)

with M typically chosen around 2. Since σ2(x, y) is compared with a

threshold, the scaling factor can be eliminated. In the m formula, I(k1, k2) is

the intensity value. Within the intervals given in the formula, there will be

different values for each intensity. When the formula m is fuzzified, all these

different intensity values will have the same uncertainty level , which is δ.

The result of the addition for two of these fuzzified intensity values will

be

µI1+̃I2
(z) =

0, if z < I1 + I2 − 2δ or z > I1 + I2 + 2δ

z−(I1+I2)+2δ
2δ

, if I1 + I2 − 2δ ≤ z ≤ I1 + I2

(I1+I2+2δ−z)
2δ

, if I1 + I2 ≤ z ≤ I1 + I2 + 2δ

where I1, I2 are two different intensity values with same uncertainty level

δ (δ ∈ Nz).

Since variance is going to be compared with a threshold, threshold is also

fuzzified:

µthreshold(z) =

0, if z < Ithreshold

or z > Ithreshold

1, if z = Ithreshold

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 75

So, the comparison between fuzzy variance and fuzzy threshold can be written

as follows:

µvar(z)≥̃µthreshold(z) = inf{min(1− µthreshold(z) + µvar(z), 1)}

Since µvar(z), µthreshold(z) are fuzzy-numbers, it is obvious that the result

will be

(1 − µthreshold(z) + µvar(z)), if (1 − µthreshold(z) + µvar(z)) is named as a,

which is a Uni-intvl,

µvar(z)≥̃µthreshold(z) ≡ a

Fuzzy edge point(F, x, y) = uni min(uni max(t1, t2)), a) can be written.

If t1∨̃t2 ≡ max(t1, t2) = b, then

Fuzzy edge point(F, x, y) = a∧̃b ≡ min(a, b) will be a number in [0, 1],

where F:Tri fuzzy image, x,y:Integer and δ ∈ Nz. After all the parts of the

definition of fuzzy edge point is defined as shown in figure 7.27.

op Fuzzy edge point : Tri fuzzy image * Integer *
Integer -> Uni intvl
axiom Fuzzy edge point def is
fa(F: Tri fuzzy image, x: Integer, y: Integer)
Fuzzy edge point(F, x, y) =
(uni min (uni max (fuzzy zero crossing 1(F, x, y),
fuzzy zero crossing 2(F, x, y)),
fequal (flap(F, x, y), tri fuzzify(0, delta))))

Figure 7.27: Op Fuzzy edge point declaration and definition

Theorem

In order to show that reasoning about the impact of the uncertainty of input

information can be specified formally in every aspect of the fusion process, a

theorem is implemented on the edge detection algorithm, which is :

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 76

delta1 ≥ delta2 => Fuzzy edge point 1 ≥ Fuzzy edge point 2

all x, y ∈ Integer, I ∈ Image, and delta1, delta2 ∈ Nz. Where delta1

and delta2 are two different values chosen to fuzzify the input data and repre-

sent the uncertainty levels of the input information, and Fuzzy edge point 1

and Fuzzy edge point 2 are the generated uncertainty values for deriving the

results of Fuzzy edge point(x, y) for two different fuzzified images.

theorem fuzzyEdge is
(fa(x: Integer, y: Integer, I: Image, delta1: Nz,
delta2: Nz)
(delta2 <= delta1) =>
(Fuzzy edge point(tri fuzzify image(I, delta2), x, y))
<=
(Fuzzy edge point(tri fuzzify image(I, delta1), x, y)))

Figure 7.28: Theorem fuzzyEdge

7.2.10 Proving in SNARK and Isabelle

As mentioned section 3.4, SNARK is an automated theorem prover. In SNARK,

the user can make changes in execution process only by using options. With

these capabilities, Theorem fuzzyEdge could not be proved by SNARK, al-

though, some options were active. Theorem proving experiments with the

fuzzyEdge theorem can be seen in Figure 7.29.

However, Isabelle is a powerful interactive theorem prover, the proof re-

quires extensive knowledge and experience in logical calculus and Isabelle. In

order to get Isabelle to prove theorem fuzzyEdge, all specifications are trans-

lated to Isabelle’s language. Some basic theorems were proved. Isabelle proof

terms embedded specifications can be seen in figures between 7.31-7.37. In

order to prove these theorems, apply (sim add:) method is used.

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 77

Figure 7.29: SNARK with no options.

Figure 7.30: SNARK with options.

As an example, Isabelle theory files for monotocity are shown in figures

7.37, 7.38, and 7.39:

Theorem fuzzyEdge could not be proved. Figure 7.37 shows first subgoal

of theorem fuzzyEdge . In this subgoal, Fuzzy edge point and tri fuzzify image

definitions are known, so it can be simplified by using these definitions.

Isabelle apply(simp add: axiom1 axiom2) rule are applied to first subgoal.

Axioms: Fuzzy edge point def, tri fuzzify image subtype constr, tri fuzzify image def,

fuzzy zero crossing 1 def, fuzzy zero crossing 2 def, and tri fuzzify def are used

as shown in figure 7.37

After simplification apply induction rule is applied to delta1 and delta2.

Then two more simplications are applied. Lastly, apply auto rule is applied.

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 78

theorem complement is
fa(f: Fuzzy set Nat, x: Nat)
fuzzy complement(fuzzy complement(f)) x = f x

proof Isa
by (auto simp add: between zero one p def
fuzzy complement def abc)
end-proof

Figure 7.31: Proof of theorem Complement

theorem commutativity is
fa(f1: Fuzzy set Nat, f2: Fuzzy set Nat, x: Nat)
t norm(f1, f2)(x) =t norm(f2, f1)(x)

proof Isa
by (simp add: between zero one p def t norm def min def)
end-proof

Figure 7.32: Proof of theorem Commutativity

After these processes, there existed one more subgoal. Since it is about a

hundred lines long, it was not put here but can be found in the appendix.

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 79

theorem assosiativity is
fa(f1: Fuzzy set Nat, f2: Fuzzy set Nat, f3: Fuzzy set
Nat, x: Nat)
t norm(f1, t norm(f2, f3))(x) = t norm(t norm(f1, f2),
f3)(x)

proof Isa
by (simp add: between zero one p def t norm def min def)
end-proof

Figure 7.33: Proof of theorem Assosiativity

theorem monotonicity is
fa(f1: Fuzzy set Nat, f2: Fuzzy set Nat, f3:
Fuzzy set Nat, x: Nat)
f2(x)<= f3(x) => t norm(f1, f2)(x) <= t norm(f1, f3)(x)

proof Isa
by (simp add: between zero one p def t norm def min def)
end-proof

Figure 7.34: Proof of theorem Monotonicity

theorem theo1 is
fa(e: Nat, f: Fuzzy number, x: Nat)
fuzzify(10, delta)(100) = 100

proof Isa:
by (simp add: fuzzify def)
end-proof

Figure 7.35: Proof of theorem Fuzzify

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 80

theorem theo2 is
fa(u1:Uni intvl, u2: Uni intvl)
uni min(10, 2)= 2

proof Isa theo2 Obligation subtype:
by (simp add: between zero one p def)
end-proof

proof Isa theo2 Obligation subtype0:
by (simp add: between zero one p def)
end-proof

proof Isa theo2:
by (simp add: between zero one p def uni min def)
end-proof

Figure 7.36: Proof of theorem Uni min

Figure 7.37: Subgoal for Monotonicity.

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 81

Figure 7.38: Theorem Monotonicity proved in step 1 in Isabelle.

Figure 7.39: Theorem Monotonicity.

Figure 7.40: Theorem fuzzyEdge proving step 1 in Isabelle.

CHAPTER 7. AN EXAMPLE: EDGE DETECTION ALGORITHM 82

Figure 7.41: Theorem fuzzyEdge proving step 2 in Isabelle.

Figure 7.42: Other steps in Isabelle.

Chapter 8

CONCLUSION

8.1 Conclusion

In the course of this work, we attempted to learn Formal Method tools starting

from minimal knowledge about these tools. Since formal method tools are

complex and not very well documented, it took a long time to learn how to

use them. In addition to Specware, the SNARK theorem prover (that comes

bundled with Specware) and the Isabelle theorem prover, were the formal

method tools used in this thesis.

A verification process is consists of two main parts: specification and

theorem proving. Specware is used to build specifications and SNARK and

Isabelle are used to prove theorems. In this work, we found Specware is a

powerful specification tool. Using Specware we were able to represent very

complex computational processes and the logic behind their processing algo-

rithms. Specware language (Metaslang) supports higher order logic and thus

we were able to represent operations that are performed not only on various

data types, but also on algorithms.

However, an insufficiency of examples and documentation is the biggest

problem with Specware. For a long time, it was attempted to get SNARK to

prove theorems, but it could prove nothing more than simple theorems. In

83

CHAPTER 8. CONCLUSION 84

this process we found some bugs in SNARK. We came to this conclusion after

a number of interactions with the developers of Specware and SNARK.

As a result, we changed the theorem prover to Isabelle. In contrast to

SNARK, Isabelle is an interactive theorem prover. But Isabelle comes with

an overwhelming load of documentation. Therefore, it is hard to find a logical

starting point. Although Isabelle can prove some theorems automatically, for

some more complex theorems it is possible to use tactics and other options

by means of adding them into specifications. This feature is very useful in

proving such theorems.

XEmacs is the software development environment for Specware. It inte-

grates Specware and Isabelle in the same environment allowing the user to

work with both tools within the same environment. XEmacs proved to be a

very handy tool in this kind of work.

Metaslang is the specification language of Specware. It is not not an

imperative programming language. It is a declarative logic based language.

Metaslang can be viewed as a language to express mathematics. Thus coding

in Metaslang is actually the same as deriving formulas in mathematics.

In this project, first, an information system was specified abstractly then

more complex specifications were built incrementatally. Initially, the specifica-

tions were non-constructive, i.e., they were based on existential specifications.

In other words, a logical formula was stating that a solution exists, without

actually pointing to a specific solution. Such specifications cannot be easily

translated into code. So the use of such specifications is somewhat limited.

These kinds of specifications can be used for verifying that a specification is

consistent, but not that it is correct.

To address this limitation, Specware provides constructs that allow for

representing constructive specifications. One of the constructs that have to be

used to develop such specifications is the construct of lambda form. It is part of

CHAPTER 8. CONCLUSION 85

Lambda Calculus. In essence, Lambda Calculus allows to express and manip-

ulate functions. Since a large class of algorithms are just functions, Lambda

Calculus provides good basis for specifying such algorithms. Thus lambda

forms were used extensively in developing the constructive specifications in

this work.

The main goal of this work was to investigate the use of formal method

tools in the software development process. It is a well known fact in software

engineering that the cost of modification of software grows exponentially with

the stage in the software development process. The cost of removing an error in

a software system after its deployment is thousands of times more expensive

than the cost of eliminating the cause of such an error in the specification

phase. Thus from the economical point of view, it pays to invest in the initial

phases, in particular in the specification phase, in order to avoid much higher

cost in the final phases. The goal of using formal method tools in software

development is just this.

Toward this goal, we have developed an library of specifications for cap-

turing the processing of uncertainty (fuzzy information). Then we developed

a specification of a fuzzy information processing system. We formulated a

number of theorems to test the specification of this system. In the course of

this work we were able to verify some of the features of the system. Some

of the theorems were not proved. This might be due to two reasons - either

our specification was not refined to a sufficient level of detail, or our analysis

tools were not powerful enough. Or simply we did devote a sufficient amount

of effort to this verification process. Whatever happens to be the case, it is

clear that we were able to stress test the specification. Although we we did

not pursue this task in this work, Specware can also generate code from a

specification.

CHAPTER 8. CONCLUSION 86

In conclusion, through our work in this thesis fuzzy set theory which rep-

resents uncertainty of categorization was specified formally with Metaslang

in Specware. As an example, fuzzy information processing specifications were

applied to an edge detection algorithm and to a theorem based on this specifica-

tion. Although they are theoretically possible and some fundamental theorems

were proved, Isabelle and SNARK failed to prove some theorems. Overall, we

saw that it is possible to verify systems before they are built and it was found

that Specware and Isabelle can be great formal method tools to build specifi-

cations and to verify them. We believe that our work will be useful for future

Specware and Isabelle users and can be considered as a useful approach for

information fusiom system formalization and verification.

8.2 Future Works

• Proving of the Model Using Isabelle

Some theorems of model, such astheorem fuzzyEdge, can be proved by

using Isabelle after getting extensive knowledge and experience in logical

calculus and Isabelle. Isabelle has lots of capabilities that have not been

used in this thesis.

• Refinement and Code Generation

We spent all of our effort to prove theorems and to write specifications

constructively. However, we could build some concrete specifications; it

is needed to refine the specifications further by considering entire spec-

ifications. Specware has the capability of code generation from specifi-

cations. So it is possible to generate executable Lisp code from refined

specifications.

• Different Fuzzy Rules

CHAPTER 8. CONCLUSION 87

Even though we implemented three fuzzification methods - triangular,

trapozaidal, gaussian - the work was focused only on the triangular fuzzi-

fication method. As a future work, other fuzzification methods can

be applied to edge detection algorithms. Furthermore, fuzzy reason-

ing specifications can be defined by using different methods other than

Lukasiewicz.

Bibliography

[1] George J. Klir and Bo Yuan, ”Fuzzy Sets and Fuzzy Logic Theory and

Applications”, Prentice Hall PTR, 1995.

[2] George J. Klir, Ute H. St. Clair, Bo Yuan, ”Fuzzy Set Theory Foundations

and Applications”, Prentice Hall PTR, 1997.

[3] R. Kruse, J. Gebhardt and F. Klawonn, ”Foundations Of Fuzzy Systems”,

John Wiley & Sons, 1994.

[4] Edmund M. Clarke and Jeannette M. Wing, ”Formal Methods : State of

the Art and Future”, Carneige Mellon University.

[5] Scott A. DeLoach and Mieczyslaw M. Kokar, ”Category Theory Approach

to Fusion of Wavelet-Based Features”.

[6] Maarten M. Fokkinga, ”A Gentle Introduction to Category Theory”, ver-

sion of June 6, 1994.

[7] Jae S. Lim, ”Two-Dimensional Signal and Image Processing”, Prentice-

Hall, Inc., 1990.

[8] T. Nipkow, L. C. Paulson and M. Wenzel, ”A Proof Assistant for Higher-

Order Logic”, Springer-Verlag, pp. 214, 2008.

[9] David L. Rumpf and Mieczyslaw M. Kokar, ”The Effect Of Measurement

Error In A Machine Learning System”.

88

BIBLIOGRAPHY 89

[10] J. McDonald and J. Anton, ”SPECWARE - producing software correct

by construction”, Kestrel Institute, March 14, 2001.

[11] Yelamraju V. Srinivbays and Richard Jullig ”Specware: Formal Support

for Composing Software”.

[12] Welcome to specware, http://www.specware.org/, June 30, 2009.

[13] ”Specware Language Manual”, Kestrel Institute, Palo Alto, California,

2007.

[14] ”Specware documentation”, http://www.specware.org/doc.html, June

30, 2009.

[15] ”Isabelle Documentation”, http://www.cl.cam.ac.uk/research/hvg/ Is-

abelle/overview.html

[16] ”SNARK Documentation”, http://www.ai.sri.com/ stickel/snark.html

[17] ”Specware to Isabelle Interface Manual”, Kestrel Institute, Palo Alto,

California, 2007.

[18] ”Specware User Manual”, Kestrel Institute, Palo Alto, California, 2007.

[19] ”Specware Tutorial”, Kestrel Institute, Palo Alto, California, 2007.

Appendix A

Crisp To Fuzzy Mapping Table

Crisp to Fuzzy Mapping Table

CRISP FUZZY

Number Fuzzy Number (FN)

True, False [0,1]

+ +̃ : FN × FN → FN

(A+̃B)(z) = sup
z=x+y

min[A(x), B(y)],∀z ∈ R

− −̃ : FN × FN → FN

(A−̃B)(z) = sup
z=x−y

min[A(x), B(y)],∀z ∈ R

· ·̃ : FN × FN → FN

(A·̃B)(z) = sup
z=x·y

min[A(x), B(y)], ∀z ∈ R

÷ ÷̃ : FN × FN → FN

(A÷̃B)(z) = sup
z=x÷y

min[A(x), B(y)],∀z ∈ R

min fuzzy −min : FN × FN → FN

fuzzy−min(A,B)(z) = sup
z=min(x,y)

min[A(x), B(y)],∀z ∈ R

90

APPENDIX A. CRISP TO FUZZY MAPPING TABLE 91

max fuzzy −max : FN × FN → FN

fuzzy−max(A,B)(z) = sup
z=max(x,y)

min[A(x), B(y)],∀z ∈ R

⇒ ⇒̃ : [0, 1]× [0, 1]→ [0, 1]

1: a⇒̃b = (1, 1− a+ b)

2: a⇒̃b =

{
1, if a ≤ b
b other

⇔ ⇔̃ : [0, 1]× [0, 1]→ [0, 1]

1: a⇔̃b = 1− |a− b|

2: a⇔̃b =

{
1, if a = b
min(a, b) other

= =̃ : FN × FN → [0, 1]

1: µ=̃v = inf {1− |µ(x)− v(x)||x ∈ R}

1: µ=̃v = inf {g(µ(x), v(x))||x ∈ R}

where g(a, b) =

{
1, if a = b
b other

≥ ≥̃ : FN × FN → [0, 1]

µ≥̃v = inf {min(1− v(x) + µ(x), 1)|x ∈ R}

≤ ≤̃ : FN × FN → [0, 1]

µ≤̃v = inf {min(1− µ(x) + v(x), 1)|x ∈ R}

Appendix B

Formal Information Fusion

Library Specs 1

%% Formal Information Fusion Library Specs
%% Fuzzy Set specification
%% Fuzzy Set is type: Fuzzy_set a = a -> Uni_intvl

%% UNI_INTVL specification
UNI_INTVL = spec

% import Nat

op between_zero_one?(x:Nat): Boolean =
x < 100 && 0 <= x

%% Uni_intvl is a type defined between 0 and 1.
type Uni_intvl = (Nat | between_zero_one?)

endspec

%% FUZZY_SET specification
FUZZY_SET = spec

import /Library/General/FiniteSet, UNI_INTVL

%% Definition of Fuzzy_set type
type Fuzzy_set a = a -> Uni_intvl

%% Declarations of Fuzzy Complement, t_norm, and t_conorm operations
op [a] fuzzy_complement : Fuzzy_set a -> Fuzzy_set a
op [a] t_norm : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_conorm : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a

%% Definitions of Fuzzy Complement, t_norm, and t_conorm.
def [a] fuzzy_complement(f1) = fn d -> 100 - f1(d)
def [a] t_norm(f1, f2) = fn d -> min(f1(d), f2(d))
def [a] t_conorm (f1, f2) = fn d -> max(f1(d), f2(d))

92

APPENDIX B. FORMAL INFORMATION FUSION LIBRARY SPECS 193

%% Definitions of min and max
op min (x1: Nat, x2: Nat): Nat =

if x1 <= x2 then x1 else x2
op max (x1: Nat, x2: Nat): Nat =

if x1 <= x2 then x2 else x1

%% Declarations of t_norm_min, t_conorm_min, t_norm_Luka
%% t_conorm_Luka, t_norm_prod, t_conorm_prod, alpha_cut operations

op [a] t_norm_min : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_conorm_min : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_norm_Luka : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_conorm_Luka : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_norm_prod : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_conorm_prod : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] alpha_cut : Fuzzy_set a * Uni_intvl -> FiniteSet a

%% Definitions of t_norm_min, t_conorm_min, t_norm_Luka
%% t_conorm_Luka, t_norm_prod, t_conorm_prod, alpha_cut

def [a] t_norm_min (f1, f2) = fn d -> min(f1(d), f2(d))
def [a] t_conorm_min (f1, f2) = fn d -> max(f1(d), f2(d))
def [a] t_norm_Luka(f1, f2) = fn d -> max(0, f1(d) + f2(d) - 100)
def [a] t_conorm_Luka (f1, f2) = fn d -> min(f1(d) + f2(d), 100)
def [a] t_norm_prod (f1, f2) = fn d -> f1(d)*f2(d)
def [a] t_conorm_prod (f1, f2) = fn d -> (f1(d) + f2(d)) - (f1(d) * f2(d))
def [a] alpha_cut (f, a) = fn d -> a <= f(d)
def [a] height(f: Fuzzy_set a): Uni_intvl =
the(h) (fa(x: a) f x <= h) && (ex(x: a) f x = h)

endspec

%% Formal Information Fusion Library Specs
%% Fuzzy number specification
%% Fuzzy_number is imported from Fuzzy_set

FUZZY_NUMBER = spec
import FUZZY_SET

%% Definitions of Fuzzy_number and Set_of_Nat
type Fuzzy_number = Fuzzy_set Nat
type Set_of_Nat = FiniteSet Nat

%% Fuzzy number is normal when height(f) has full membership degree
axiom normality is
fa(f:Fuzzy_number)

height(f) = 100

%% Fuzzy number is convex
axiom convexity is
fa(f:Fuzzy_number, x1:Nat, x2:Nat, lamd: Uni_intvl)

f(lamd * x1) + ((100 - lamd) * x2) >= min(f(x1), f(x2))

endspec

APPENDIX B. FORMAL INFORMATION FUSION LIBRARY SPECS 194

%% Formal Information Fusion Library Specs
%% FUZZY_ARITHM
%% In this part fuzzy arithmetic operations are specified

FUZZY_ARITHM = spec
import FUZZY_NUMBER

op fuzzy_add : Fuzzy_number * Fuzzy_number -> Fuzzy_number
op fuzzy_sub : Fuzzy_number * Fuzzy_number -> Fuzzy_number
op fuzzy_mult: Fuzzy_number * Fuzzy_number -> Fuzzy_number
op fuzzy_div : Fuzzy_number * Fuzzy_number -> Fuzzy_number
op fuzzy_min : Fuzzy_number * Fuzzy_number -> Fuzzy_number
op fuzzy_max : Fuzzy_number * Fuzzy_number -> Fuzzy_number

%% Definition of Fuzzy Addition
axiom fuzzy_add_def is
fa(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat, y:Nat, z:Nat, a:Uni_intvl)
fuzzy_add(f1, f2)(z) = a <=> z=x+y => (f1(x) <= a || f2(y) <= a) &&
(ex(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat, y:Nat, z:Nat, a:Uni_intvl)

z=x+y && ((f1(x) = a && a <= f2(y)) || (f2(y) = a && a <= f1(x))))

%% Definition of Fuzzy Substraction
axiom fuzzy_sub_def is
fa(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat, y:Nat, z:Nat, a:Uni_intvl)
fuzzy_sub(f1, f2)(z) = a <=> z=x-y => (f1(x) <= a || f2(y) <= a) &&
(ex(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat, y:Nat, z:Nat, a:Uni_intvl)

z=x-y && ((f1(x) = a && a <= f2(y)) || (f2(y) = a && a <= f1(x))))

%% Definition of Fuzzy Multiplication
axiom fuzzy_mult_def is
fa(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat, y:Nat, z:Nat, a:Uni_intvl)
fuzzy_mult(f1, f2)(z) = a <=> z=x*y => (f1(x) <= a || f2(y) <= a) &&
(ex(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat, y:Nat, z:Nat, a:Uni_intvl)

z=x*y && ((f1(x) = a && a <= f2(y)) || (f2(y) = a && a <= f1(x))))

%% Definition of Fuzzy Division
axiom fuzzy_div_def is
fa(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat, y:Nat, z:Nat, a:Uni_intvl)
fuzzy_div(f1, f2)(z) = a <=> x=z*y => (f1(x) <= a || f2(y) <= a) &&
(ex(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat, y:Nat, z:Nat, a:Uni_intvl)

x=z*y && ((f1(x) = a && a <= f2(y)) || (f2(y) = a && a <= f1(x))))

%% Definition of Fuzzy Minimum
axiom fuzzy_min_def is
fa(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat, y:Nat, z:Nat, a:Uni_intvl)
fuzzy_min(f1, f2)(z) = a <=> z= min(x,y) => (f1(x) <= a || f2(y) <= a) &&
(ex(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat, y:Nat, z:Nat, a:Uni_intvl)

z= min(x,y) && ((f1(x) = a && a <= f2(y)) || (f2(y) = a && a <= f1(x))))

%% Definition of Fuzzy Maximum
axiom fuzzy_max_def is
fa(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat, y:Nat, z:Nat, a:Uni_intvl)
fuzzy_max(f1, f2)(z) = a <=> z= max(x,y) => (f1(x) <= a || f2(y) <= a) &&
(ex(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat, y:Nat, z:Nat, a:Uni_intvl)

z= max(x,y) && ((f1(x) = a && a <= f2(y)) || (f2(y) = a && a <= f1(x))))

APPENDIX B. FORMAL INFORMATION FUSION LIBRARY SPECS 195

endspec

%% Formal Information Fusion Library Specs
%% FUZZY_REASONING
%% Fuzzy reasoning operations are defined.

FUZZY_REASONING = spec
import FUZZY_ARITHM

op fequal : Fuzzy_number * Fuzzy_number -> Uni_intvl
op fgeq : Fuzzy_number * Fuzzy_number -> Uni_intvl
op fleq : Fuzzy_number * Fuzzy_number -> Uni_intvl
op inf : Nat -> Uni_intvl

%% Definition of Fuzzy equal
axiom fequal_def is
fa(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat)
fequal(f1, f2) = inf (100 - (abs(f1(x) - f2(x))))

%% Definition of Fuzzy greater than and equal
axiom fgeq_def is
fa(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat)
fgeq(f1, f2) = inf (min ((100 - f1(x) + f2(x)),100))

%% Definition of Fuzzy less than and equal
axiom fleq_def is
fa(f1:Fuzzy_number, f2:Fuzzy_number, x:Nat)
fleq(f1, f2) = inf (min ((100 - f2(x) + f1(x)),100))

endspec

%% Formal Information Fusion Library Specs
%% IMAGE
%% In this part image is defined.

IMAGE = spec
type Image = Integer * Integer -> Nat

endspec

%% Formal Information Fusion Library Specs
%% FUZZIFICATION
%% Fuzzification spec is defined.

FUZZIFICATION = spec
import IMAGE, FUZZY_REASONING
type Nz = {i:Nat | i~=0}

endspec

APPENDIX B. FORMAL INFORMATION FUSION LIBRARY SPECS 196

%% Formal Information Fusion Library Specs
%% TRI_FUZZIFY
%% Triangular fuzzification is defined.

TRI_FUZZIFY = spec
import FUZZIFICATION

type Tri_fuzzy_image = Integer * Integer -> Fuzzy_number

op uni_min : Uni_intvl * Uni_intvl -> Uni_intvl
op uni_max : Uni_intvl * Uni_intvl -> Uni_intvl
op tri_fuzzify : Nat * Nz -> Fuzzy_number
op tri_fuzzify_2 : Nat -> Fuzzy_number
op tri_fuzzify_image : Image * Nz -> Tri_fuzzy_image
op fuzzify : Nat * Nz -> Fuzzy_number
op fuzzify_1 : Nat * Nz -> Fuzzy_number

%% Uncertainty level is given as a const
%% delta is the uncertainty level of the fuzzification

op delta : Nz

def uni_min(u1,u2) = if u1 <= u2 then u1 else u2
def uni_max(u1,u2) = if u2 <= u1 then u2 else u1

%% op tri_fuzzify is to generate a triangular membership
%% function for each crisp value, define an Around label.

axiom tri_fuzzify_def is
fa(e: Nat, f: Fuzzy_number)
(tri_fuzzify(e, delta) = f <=> (fa(x: Nat)

(x < (e - delta) || (e + delta) < x <=>
f(x) = 0 || (e - delta) <= x && x <= e <=>
f(x) = div((x - e + delta), (delta)) || e <= x && x <= (e + delta) <=>
f(x) = div((e - x + delta), (delta)))))

%% op tri_fuzzify_2 deals with the situation when
%% uncertainty level is zero

axiom tri_fuzzify_2_def is
fa(e: Nat, f: Fuzzy_number)
(tri_fuzzify_2(e) = f <=> (fa(x: Nat)

(x < e || e < x <=>
f(x) = 0 || x <= e && e <= x <=>
f(x) = 1)))

%% Definition of image fuzzification
axiom tri_fuzzify_image_def is
fa(I: Image, F:Tri_fuzzy_image)
(tri_fuzzify_image(I, delta) = F <=>

(fa(x: Integer, y: Integer)
(F(x,y) = tri_fuzzify(I(x, y), delta))))

%% Definitions of fuzzify and fuzzify_l
axiom fuzzify_def is
fa(e: Nat, f: Fuzzy_number, x: Nat)
(fuzzify(e, delta)(x) = tri_fuzzify(e, delta)(x) <=>

x < e || fuzzify(e, delta)(x) = 100 <=>

APPENDIX B. FORMAL INFORMATION FUSION LIBRARY SPECS 197

e <= x)

axiom fuzzify_1_def is
fa(e: Nat, f: Fuzzy_number, x: Nat)
(fuzzify(e, delta)(x) = tri_fuzzify(e, delta)(x) <=>

e < x || fuzzify(e, delta)(x) = 100 <=>
x <= e)

endspec

%% Formal Information Fusion Library Specs
%% TRA_FUZZIFY
%% Trapezoidal fuzzification is defined.

TRA_FUZZIFY = spec
import FUZZIFICATION

type Tra_fuzzy_image = Integer * Integer -> Fuzzy_number

op tra_fuzzify : Nat * Nz * Nz -> Fuzzy_number
op tra_fuzzify_2 : Nat -> Fuzzy_number
op tra_fuzzify_image : Image * Nz * Nz -> Tra_fuzzy_image

%% Uncertainty level is given as two consts
%% delta1 + delta2 is the uncertainty level of the fuzzification

op delta1: Nz
op delta2: Nz

%% op tra_fuzzify is to generate a trapezoidal membership
%% function for each crisp value, define an Around label.

axiom tri_fuzzify_def is
fa(e: Nat, f: Fuzzy_number)
(tra_fuzzify(e, delta1, delta2) = f <=>

(fa(x: Nat)
(x<(e - (delta1+delta2)) || (e + (delta1+delta2))<x <=>

f(x)=0 || (e - delta1)<=x && x<=(e + delta1) <=>
f(x)=100 || (e - (delta1+delta2))<=x && x<=(e - delta1) <=>
f(x)=(x-(e - (delta1+delta2)))* inv(delta2) || (e+delta1)<=x &&
x<=(e+(delta1+delta2)) <=>
f(x)=(e+(delta1+delta2)-x)* inv(delta2))))

%% op tra_fuzzify_2 deals with the situation when
%% uncertainty level is zero

axiom tra_fuzzify_2_def is
fa(e: Nat, f: Fuzzy_number)
(tra_fuzzify_2(e) = f <=>

(fa(x: Nat)
(x<e || e<x <=>

f(x)=0 || x<=e && e<=x <=>
f(x)=100)))

%% definition of fuzzification of Image
axiom tra_fuzzify_image_def is
fa(I: Image, F:Tra_fuzzy_image)

APPENDIX B. FORMAL INFORMATION FUSION LIBRARY SPECS 198

(tra_fuzzify_image(I, delta1, delta2) = F <=>
(fa(x: Integer, y: Integer)

(F(x,y) = tra_fuzzify(I(x, y), delta1, delta2))))
endspec

%% Formal Information Fusion Library Specs
%% GAUSS_FUZZIFY
%% Gaussian fuzzification is defined.

GAUSS_FUZZIFY = spec
import FUZZIFICATION

type Gauss_fuzzy_image = Integer * Integer -> Fuzzy_number

op gauss_fuzzify : Nat * Nz * Nz -> Fuzzy_number
op gauss_fuzzify_2 : Nat -> Fuzzy_number
op gauss_fuzzify_image : Image * Nz * Nz -> Gauss_fuzzy_image
op exp : Nat -> Nat
op square : Nat -> Nat

%% Uncertainty level is given as two consts
op sigma : Nz
op mu : Nz

%% op gauss_fuzzify is to generate a Gaussian membership
%% function for each crisp value, define an Around label.

axiom gauss_fuzzify_def is
fa(e: Nat, f: Fuzzy_number)
(gauss_fuzzify(e, sigma, mu) = f <=>

(fa(x:Nat)
f(x) = exp(-square((e-mu)*inv(sigma)))))

%% op gauss_fuzzify_2 deals with the situation when
%% uncertainty level is zero

axiom gauss_fuzzify_2_def is
fa(e: Nat, f: Fuzzy_number)
(gauss_fuzzify_2(e) = f <=> (fa(x: Nat)

(x<e || e<x <=>
f(x)=zero || x<=e && e<=x <=>
f(x)=one)))

%% definition of fuzzification of Image
axiom gauss_fuzzify_image_def is
fa(I: Image, F: Gauss_fuzzy_image)
(gauss_fuzzify_image(I, sigma, mu) = F <=>

(fa(x:Integer, y:Integer)
(F(x,y) = gauss_fuzzify(I(x,y), sigma, mu))))

endspec

%% Formal Information Fusion Library Specs
%% DEFUZZIFICATION 1

APPENDIX B. FORMAL INFORMATION FUSION LIBRARY SPECS 199

%% Defuzzification is defined.

DEFUZZIFICATION = spec
import FUZZY_NUMBER

%% type Intvl is a set of natural numbers
type Intvl = Set_of_Nat

op defuzzify_1 : Fuzzy_number -> Nat
op inf : Intvl -> Nat
op sup : Intvl -> Nat
op height_intvl : Fuzzy_number -> Intvl
op div : Nat * Nat -> Nat

%% defuzzify(F) = (inf(M) + sup(M))/2
%% M=an interval [z] s.t. F(z) = height(F) = one

def defuzzify_1(F) =
div((inf(height_intvl(F))+ sup(height_intvl(F))),(1 + 1))

axiom inf_def is
fa(I: Intvl, a: Nat, x: Nat)
(inf(I) = a <=>

(x in? I) => a <= x)

axiom sup_def is
fa(I: Intvl, a: Nat, x: Nat)
(sup(I) = a <=>

(x in? I) => x <= a)

axiom height_intvl_def is
fa(F: Fuzzy_number, I: Intvl, x: Nat)
(height_intvl(F) = I <=>

F(x) = 100 <=> (x in? I))

endspec

%% Formal Information Fusion Library Specs
%% DEFUZZIFICATION 2
%% Defuzzification is defined.

DEFUZZIFICATION_2 = spec
import FUZZY_NUMBER

type Intvl = Set_of_Nat

op defuzzify_2 : Fuzzy_number -> Nat
op inf : Intvl -> Nat
op sup : Intvl -> Nat
op alpha_intvl : Fuzzy_number -> Intvl
op div : Nat * Nat -> Nat

op alpha : Uni_intvl

%% defuzzify_2(F) = (inf(M) + sup(M))/2

APPENDIX B. FORMAL INFORMATION FUSION LIBRARY SPECS 1100

%% M=an interval [z] s.t. F(z) = alpha_cut of F
def defuzzify_2(F) =

div((inf(alpha_intvl(F))+ sup(alpha_intvl(F))),(1 + 1))

axiom inf_def is
fa(I: Intvl, a: Nat, x: Nat)
(inf(I) = a <=>

(x in? I) => a <= x)

axiom sup_def is
fa(I: Intvl, a: Nat, x: Nat)
(sup(I) = a <=>

(x in? I) => x <= a)

axiom alpha_intvl_def is
fa(F: Fuzzy_number, I: Intvl, x: Nat)
(alpha_intvl(F) = I <=>

F(x) = alpha <=> (x in? I))

endspec

%% Formal Information Fusion Library Specs
%% EDGE_POINT
%% Edge_point is defined.

EDGE_POINT = spec
import IMAGE

%% Laplacian_based algorithm is used to derive edge point
op edge_point? : Image * Integer * Integer -> Boolean
op lap : Image * Integer * Integer -> Nat
op var : Image * Integer * Integer -> Nat
op ysum: Image * Integer * Integer -> Nat
op elmt: Image * Integer * Integer -> Nat
op m : Image * Integer * Integer -> Nat
op sub : Image * Integer * Integer -> Nat
op zero_crossing_1 : Image * Integer * Integer -> Boolean
op zero_crossing_2 : Image * Integer * Integer -> Boolean

op thrd : Nat

type Edge_point = (Image * Integer * Integer | edge_point?)

def lap(I, x, y) =
(((I((x+1),y)+I((x-1),y)) + (I((y+1),x)+I((y-1),x))) -

((I(x,y)+I(x,y))+(I(x,y)+I(x,y))))

def sub(I, x, y) =
(((I(x, (y-(1+1))) + I(x, (y-1))) + (I(x, y) + I(x, (y+1)))) +

I(x, (y+(1+1))))

def m(I, x, y) =
(((sub(I, (x-(1+1)), y) + sub(I, (x-1), y)) +

APPENDIX B. FORMAL INFORMATION FUSION LIBRARY SPECS 1101

(sub(I, x, y) + sub(I, (x+1), y))) + sub(I, (x+(1+1)), y))

def elmt(I, x, y) =
((I(x, y) - m(I, x, y))*(I(x, y) - m(I, x, y)))

def ysum(I, x, y) =
(((elmt(I, x, (y-(1+1))) + elmt(I, x, (y-1))) +

(elmt(I, x, y) + elmt(I, x, (y+1)))) + elmt(I, x, (y+(1+1))))

%% definition of local variance
def var(I, x, y) =

(((ysum(I, (x-(1+1)), y) + ysum(I, (x-1), y)) +
(ysum(I, x, y) + ysum(I, (x+1), y))) + ysum(I, (x+(1+1)), y))

%% definition of zero_crossing
axiom zero_crossing_1_def is
fa(I: Image, x: Integer, y: Integer)
(zero_crossing_1(I, x, y) = ((lap(I,x,y) < 0) &&

(0 < lap(I,x,(y+1))) ||
(0 < lap(I,(x+1), y))))

axiom zero_crossing_2_def is
fa(I: Image, x: Integer, y: Integer)
(zero_crossing_2(I, x, y) = ((0 < lap(I, x, y)) &&

(lap(I, x, (y+1)) < 0) ||
(lap(I, (x+1), y) < 0)))

%% definition of edge_point
axiom edge_point_def is
fa(I: Image, x: Integer, y: Integer)
(edge_point?(I, x, y) <=>
(zero_crossing_1(I,x,y) || zero_crossing_2(I,x,y))

&& (thrd < var(I, x, y)))

endspec

%% Formal Information Fusion Library Specs
%% EDGE
%% Edge is defined.

EDGE = spec
import EDGE_POINT

op edge? : Image * Integer * Integer * Integer * Integer -> Boolean

type Edge = (Image*Integer*Integer*Integer*Integer | edge?)

axiom edge?_def is
fa(I: Image, x1: Integer, y1: Integer, x2: Integer, y2: Integer)
(edge?(I, x1, y1, x2, y2) <=>

(edge_point?(I, x1, y1) && edge_point?(I, x2, y2) &&
((y2 = y1 && (fa(x: Integer) (x <= x2 && x1 < x =>

edge_point?(I, x, y1)))) ||
(x2 = x1 && (fa(y: Integer) (y <= y2 && y1 < y =>

edge_point?(I, x1, y)))) ||
(fa(x: Integer, y: Integer)

APPENDIX B. FORMAL INFORMATION FUSION LIBRARY SPECS 1102

(y < y2 && y1 <= y && x < x2 && x1 <= x =>
edge_point?(I, (x+1), (y+1)))))))

endspec

%% Formal Information Fusion Library Specs
%% FUZZY_EDGE
%% how to derive fuzzy edge points
%% If (zero_crossing_1(I, x, y),zero_crossing_2(I,x,y)==1
%% and var(I, x, y) >= thrd
%% then (x, y) is an Edge_point.(crisp algorithm)
%% Fuzzy logic:
%% If zero_crossing_1(I, x, y)and zero_crossing_2(I, x, y) are true and
%% fvar(I, x, y) is fuzzy greater than thrd
%% then (x, y) is a Fuzzy_edge_point.

FUZZY_EDGE = spec
import TRI_FUZZIFY

type ONE_SORT

op flap : Tri_fuzzy_image * Integer * Integer -> Fuzzy_number
op fvar : Tri_fuzzy_image * Integer * Integer -> Fuzzy_number
op fysum : Tri_fuzzy_image * Integer * Integer -> Fuzzy_number
op felmt : Tri_fuzzy_image * Integer * Integer -> Fuzzy_number
op fm : Tri_fuzzy_image * Integer * Integer -> Fuzzy_number
op fsub : Tri_fuzzy_image * Integer * Integer -> Fuzzy_number
op Fuzzy_edge_point : Tri_fuzzy_image * Integer * Integer -> Uni_intvl
op Tri_fuzzy_image : Integer * Integer -> Fuzzy_number
op fuzzy_zero_crossing_1 : Tri_fuzzy_image * Integer * Integer -> Uni_intvl
op fuzzy_zero_crossing_2 : Tri_fuzzy_image * Integer * Integer -> Uni_intvl

op thrd: Nat

type Fuzzy_edge_point = Tri_fuzzy_image * Integer * Integer -> Uni_intvl

%% definition of fuzzy Laplacian
def flap(F, x, y) =

fuzzy_sub (fuzzy_add (fuzzy_add (F((x+1), y),
F((x-1), y)),

fuzzy_add (F(x, (y+1)),
F(x, (y-1)))),

fuzzy_add (fuzzy_add (F(x,y), F(x,y)),
fuzzy_add (F(x,y), F(x,y))))

def fsub(F, x, y) =
fuzzy_add (fuzzy_add (fuzzy_add (F(x, (y-(1+1))),

F(x, (y-1))),
fuzzy_add (F(x, y),

F(x, (y+1)))),
F(x, (y+(1+1))))

def fm(F, x, y) =
fuzzy_add (fuzzy_add (fuzzy_add (fsub(F, (x-(1+1)), y),

fsub(F, (x-1), y)),

APPENDIX B. FORMAL INFORMATION FUSION LIBRARY SPECS 1103

fuzzy_add (fsub(F, x, y),
fsub(F, (x+1), y))),

fsub(F, (x+(1+1)), y))

def felmt(F, x, y) =
fuzzy_mult (fuzzy_sub (F(x, y), F(x, y)),

fuzzy_sub (F(x, y), F(x, y)))

def fysum(F, x, y) =
fuzzy_add (fuzzy_add (fuzzy_add (felmt(F, x, (y-(1+1))),

felmt(F, x, (y-1))),
fuzzy_add (felmt(F, x, y),

felmt(F, x, (y+1)))),
felmt(F, x, (y+(1+1))))

%% definition of fuzzy local variance
def fvar(F, x, y) =

fuzzy_add (fuzzy_add (fuzzy_add (fysum(F, (x-(1+1)), y),
fysum(F, (x-1), y)),

fuzzy_add (fysum(F, x, y),
fysum(F, (x+1), y))),

fysum(F, (x+(1+1)), y))

%% fuzzy_zero_crossing
axiom fuzzy_zero_crossing_1_def is
fa(F: Tri_fuzzy_image, x: Integer, y: Integer)
(fuzzy_zero_crossing_1(F, x, y) =

(uni_min (fleq (flap(F, x, y), tri_fuzzify(0, delta)),
(uni_max (fgeq (flap(F, x, (y+1)), tri_fuzzify(0, delta)),

fgeq (flap(F, (x+1), y), tri_fuzzify(0, delta)))))))

axiom fuzzy_zero_crossing_2_def is
fa(F: Tri_fuzzy_image, x: Integer, y: Integer)
(fuzzy_zero_crossing_2(F, x, y) =

(uni_min (fgeq (flap(F, x, y), tri_fuzzify(0, delta)),
(uni_max (fleq (flap(F, x, (y+1)), tri_fuzzify(0, delta)),

fleq (flap(F, (x+1), y), tri_fuzzify(0, delta)))))))

%% definition of Fuzzy edge point
def Fuzzy_edge_point(F, x, y) =

(uni_min (uni_max (fuzzy_zero_crossing_1(F, x, y),
fuzzy_zero_crossing_2(F, x, y)),

fequal (flap(F, x, y), tri_fuzzify(0, delta))))

%% Theorem fuzzyEdge
theorem fuzzyEdge is
(fa(x: Integer, y: Integer, I: Image, delta1: Nz, delta2: Nz)

(delta2 <= delta1) =>
(Fuzzy_edge_point(tri_fuzzify_image(I, delta2), x, y)) <=
(Fuzzy_edge_point(tri_fuzzify_image(I, delta1), x, y)))

endspec

p1 = prove fuzzyEdge in FUZZY_EDGE
}

Appendix C

Formal Information Fusion
Library Specs 2

Specifications are transformed to concrete specifications and added theorems

and Isabelle proof terms. While some parts stayed same some parts changed.

This part shows changed parts of specifications.

%% Formal Information Fusion Library Specs
%% Fuzzy Set specification
%% Fuzzy Set is type: Fuzzy_set a = a -> Uni_intvl

%% UNI_INTVL specification
UNI_INTVL = spec

% import Nat

op between_zero_one?(x:Nat): Boolean =
x < 100 && 0 <= x

%% Uni_intvl is a type defined between 0 and 1.
type Uni_intvl = (Nat | between_zero_one?)

endspec

%% FUZZY_SET specification
FUZZY_SET = spec

import /Library/General/FiniteSet, UNI_INTVL

%% Definition of Fuzzy_set type
type Fuzzy_set a = a -> Uni_intvl

%% Declarations of Basic Fuzzy Operations
op [a] fuzzy_complement : Fuzzy_set a -> Fuzzy_set a
op [a] t_norm : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_conorm : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_norm_min : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_conorm_min : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_norm_Luka : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_conorm_Luka : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_norm_prod : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a
op [a] t_conorm_prod : Fuzzy_set a * Fuzzy_set a -> Fuzzy_set a

104

APPENDIX C. FORMAL INFORMATION FUSION LIBRARY SPECS 2105

op [a] alpha_cut : Fuzzy_set a * Uni_intvl -> FiniteSet a

%% Definitions of Basic Fuzzy Operations
def [a] fuzzy_complement(f1) d = 100 - f1(d)
def [a] t_norm(f1, f2) d = min(f1(d),f2(d))
def [a] t_conorm (f1, f2) d = max(f1(d), f2(d))
def [a] t_norm_min (f1, f2) d = min(f1(d), f2(d))
def [a] t_conorm_min (f1, f2) d = max(f1(d), f2(d))
def [a] t_norm_Luka(f1, f2) d = max(0, f1(d) + f2(d) - 100)
def [a] t_conorm_Luka (f1, f2) d = min(f1(d) + f2(d), 100)
def [a] t_norm_prod (f1, f2) d = f1(d)*f2(d)
def [a] t_conorm_prod (f1, f2) d = (f1(d) + f2(d)) - (f1(d) * f2(d))
def [a] alpha_cut (f, a) d = (a <= f(d))
def [a] height(f: Fuzzy_set a): Uni_intvl =
the(h) (fa(x: a) f x <= h) && (ex(x: a) f x = h)

%% Definitions of min and max
op min (x1: Nat, x2: Nat): Nat = if x1 <= x2 then x1 else x2
op max (x1: Nat, x2: Nat): Nat = if x1 <= x2 then x2 else x1

%% Theorems and Isabelle proof terms
axiom abc is
fa(a: Nat, b: Nat)
a - (a - b) = b

%% Fuzzy complement of fuzzy complement of a fuzzy set equals to itself.
theorem complement is
fa(f: Fuzzy_set Nat, x: Nat)
fuzzy_complement(fuzzy_complement(f)) x = f x

proof Isa
by (auto simp add: between_zero_one_p_def fuzzy_complement_def abc)
end-proof

%% Fuzzy Set intersection/union provides commutativity.
theorem commutativity is
fa(f1: Fuzzy_set Nat, f2: Fuzzy_set Nat, x: Nat)
t_norm(f1, f2)(x) =t_norm(f2, f1)(x)

proof Isa
by (simp add: between_zero_one_p_def t_norm_def min_def)
end-proof

%% Fuzzy Set intersection/union provides assosiativity.
theorem assosiativity is
fa(f1: Fuzzy_set Nat, f2: Fuzzy_set Nat, f3: Fuzzy_set Nat, x: Nat)
t_norm(f1, t_norm(f2, f3))(x) = t_norm(t_norm(f1, f2), f3)(x)

proof Isa
by (simp add: between_zero_one_p_def t_norm_def min_def)
end-proof

%% Fuzzy Set intersection/union provides monotonicity.
theorem monotonicity is
fa(f1: Fuzzy_set Nat, f2: Fuzzy_set Nat, f3: Fuzzy_set Nat, x: Nat)
f2(x)<= f3(x) => t_norm(f1, f2)(x) <= t_norm(f1, f3)(x)

APPENDIX C. FORMAL INFORMATION FUSION LIBRARY SPECS 2106

proof Isa
by (simp add: between_zero_one_p_def t_norm_def min_def)
end-proof

endspec

%% Formal Information Fusion Library Specs
%% Fuzzy number specification
%% Fuzzy-number is imported from Fuzzy-set

FUZZY_NUMBER = spec
import FUZZY_SET

%% Definitions of Fuzzy_number and Set_of_Real
type Fuzzy_number = Fuzzy_set Nat
type Set_of_Nat = FiniteSet Nat

%% Fuzzy number is normal when height(f) has full membership degree
axiom normality is
fa(f:Fuzzy_number)

height(f) = 100

%% Fuzzy number is convex
axiom convexity is
fa(f:Fuzzy_number, x1:Nat, x2:Nat, lamd: Uni_intvl)

f(lamd * x1) + ((100 - lamd) * x2) >= min(f(x1), f(x2))

endspec

%% Formal Information Fusion Library Specs
%% FUZZY-ARITHM
%% In this part fuzzy arithmetic operations are specified

FUZZY_ARITHM = spec
import FUZZY_NUMBER

op isMinIn (r:Nat, sr: Set Nat) infixl 20 : Bool =
r in? sr && (fa(r1) r1 in? sr => r <= r1)

op hasMin? (sr: Set Nat) : Bool = (ex(r) r isMinIn sr)

op minIn (sr: Set Nat | hasMin? sr) : Nat = the(r) r isMinIn sr

op rangeCC (lo:Nat, hi:Nat| lo <= hi) : Set Nat=
fn r -> lo <= r && r <= hi

op rangeOO (lo:Nat, hi:Nat| lo < hi) : Set Nat=
fn r -> lo < r && r < hi

op rangeCO (lo:Nat, hi:Nat| lo < hi) : Set Nat=
fn r -> lo <= r && r < hi

APPENDIX C. FORMAL INFORMATION FUSION LIBRARY SPECS 2107

op rangeOC (lo:Nat, hi:Nat| lo < hi) : Set Nat=
fn r -> lo < r && r <= hi

type Range = {rs : Set Nat | ex(lo:Nat,hi:Nat)
lo <= hi && rs = rangeCC (lo, hi) ||
lo < hi && rs = rangeOO (lo, hi) ||
lo < hi && rs = rangeCO (lo, hi) ||
lo < hi && rs = rangeOC (lo, hi)}

op sup (rng:Range) : Nat=
minIn (fn hi -> (fa(r) r in? rng => hi >= r))

op fuzzy_add(f1: Fuzzy_set Nat, f2: Fuzzy_set Nat) (z: Nat): Uni_intvl =
sup(map (fn (x,y) -> min(f1 x, f2 y)) (fn (x,y) -> x + y = z))

op fuzzy_sub(f1: Fuzzy_set Nat, f2: Fuzzy_set Nat) (z: Nat): Uni_intvl =
sup(map (fn (x,y) -> min(f1 x, f2 y)) (fn (x,y) -> x - y = z))

op fuzzy_mult(f1: Fuzzy_set Nat, f2: Fuzzy_set Nat) (z: Nat): Uni_intvl =
sup(map (fn (x,y) -> min(f1 x, f2 y)) (fn (x,y) -> x * y = z))

op fuzzy_div(f1: Fuzzy_set Nat, f2: Fuzzy_set Nat) (z: Nat): Uni_intvl =
sup(map (fn (x,y) -> min(f1 x, f2 y)) (fn (x,y) -> z * y = x))

op fuzzy_min(f1: Fuzzy_set Nat, f2: Fuzzy_set Nat) (z: Nat): Uni_intvl =
sup(map (fn (x,y) -> min(f1 x, f2 y)) (fn (x,y) -> min(x, y) = z))

op fuzzy_max(f1: Fuzzy_set Nat, f2: Fuzzy_set Nat) (z: Nat): Uni_intvl =
sup(map (fn (x,y) -> min(f1 x, f2 y)) (fn (x,y) -> max(x, y) = z))

endspec

%% Formal Information Fusion Library Specs
%% FUZZY-REASONING
%% Fuzzy reasoning operations are defined.

FUZZY_REASONING = spec
import FUZZY_ARITHM

%% Definition of Fuzzy equal
op fequal (f1: Fuzzy_number, f2: Fuzzy_number): Uni_intvl =
(fa(x:Nat) (inf (100 - (abs(f1(x) - f2(x))))))

%% Definition of Fuzzy greater than and equal
op fgeq (f1: Fuzzy_number, f2: Fuzzy_number): Uni_intvl =
(fa(x:Nat) inf (min ((100 + f1(x) - f2(x)),100))

%% Definition of Fuzzy less than and equal
op fleq (f1: Fuzzy_number, f2: Fuzzy_number): Uni_intvl =
(fa(x:Nat) inf (min ((100 + f2(x) - f1(x)),100))

endspec

APPENDIX C. FORMAL INFORMATION FUSION LIBRARY SPECS 2108

%% Formal Information Fusion Library Specs
%% IMAGE
%% In this part image is defined.

IMAGE = spec
type Image = Integer * Integer -> Nat

endspec

%% Formal Information Fusion Library Specs
%% FUZZIFICATION
%% Fuzzification spec is defined.

FUZZIFICATION = spec
import IMAGE, FUZZY_REASONING
type Nz = {i:Nat | i~=0}

endspec

%% Formal Information Fusion Library Specs
%% TRI-FUZZIFY
%% Triangular fuzzification is defined.

TRI_FUZZIFY = spec
import FUZZIFICATION

type Tri_fuzzy_image = Integer * Integer -> Fuzzy_number

op uni_min : Uni_intvl * Uni_intvl -> Uni_intvl
op uni_max : Uni_intvl * Uni_intvl -> Uni_intvl
op tri_fuzzify : Nat * Nz -> Fuzzy_number
op tri_fuzzify_2 : Nat -> Fuzzy_number
op tri_fuzzify_image : Image * Nz -> Tri_fuzzy_image
op fuzzify : Nat * Nz -> Fuzzy_number
op fuzzify_1 : Nat * Nz -> Fuzzy_number

%% Uncertainty level is given as a const
%% delta is the uncertainty level of the fuzzification

op delta : Nz

def uni_min(u1,u2) = if u1 <= u2 then u1 else u2
def uni_max(u1,u2) = if u2 <= u1 then u2 else u1

%% op tri-fuzzify is to generate a triangular membership
%% function for each crisp value, define an Around label.

axiom tri_fuzzify_def is
fa(e: Nat, f: Fuzzy_number)
(tri_fuzzify(e, delta) = f =>

(fa(x: Nat)
if ((e - delta) <= x && x <= e)

then f(x) = div((x - e + delta), (delta))
else if (e <= x && x <= (e + delta))

then f(x) = div((e - x + delta), (delta))

APPENDIX C. FORMAL INFORMATION FUSION LIBRARY SPECS 2109

else f(x) = 0))

%% op tri-fuzzify-2 deals with the situation when
%% uncertainty level is zero

axiom tri_fuzzify_2_def is
fa(e: Nat, f: Fuzzy_number)
(tri_fuzzify_2(e) = f =>

(fa(x: Nat)
if (e <= x && x <= e)

then f(x) = 100
else f(x) = 0))

%% Definition of image fuzzification
axiom tri_fuzzify_image_def is
fa(I: Image, F:Tri_fuzzy_image)
(tri_fuzzify_image(I, delta) = F =>

(fa(x: Integer, y: Integer)
(F(x,y) = tri_fuzzify(I(x, y), delta))))

%% Definitions of fuzzify and fuzzify-l
axiom fuzzify_def is
fa(e: Nat, f: Fuzzy_number, x: Nat)
(fuzzify(e, delta)(x) =

(if (x < e)
then tri_fuzzify(e, delta)(x)

else 100))

axiom fuzzify_1_def is
fa(e: Nat, f: Fuzzy_number, x: Nat)
(fuzzify(e, delta)(x) =

(if (e < x)
then tri_fuzzify(e, delta)(x)

else 100))

%% Theorems and Isabelle proof terms
theorem theo1 is
fa(e: Nat, f: Fuzzy_number, x: Nat)
fuzzify(10, delta)(100) = 100

proof Isa theo2_Obligation_subtype:
by (simp add: fuzzify_def)
end-proof

theorem theo2 is
fa(u1:Uni_intvl, u2: Uni_intvl)
uni_min(10, 2)= 2

%% Obligation subtypes are created by Isabelle and needed to prove too.
proof Isa theo2_Obligation_subtype:
by (simp add: between_zero_one_p_def)
end-proof

proof Isa theo2_Obligation_subtype0:
by (simp add: between_zero_one_p_def)
end-proof

APPENDIX C. FORMAL INFORMATION FUSION LIBRARY SPECS 2110

proof Isa theo2:
by (simp add: between_zero_one_p_def uni_min_def)
end-proof

endspec

%% Formal Information Fusion Library Specs
%% DEFUZZIFICATION 1
%% Defuzzification is defined.

DEFUZZIFICATION = spec
import FUZZY_NUMBER, FUZZY_ARITHM

%% type Intvl is a set of natural numbers
type Intvl = Set_of_Nat

op defuzzify_1 : Fuzzy_number -> Nat
op inf : Intvl -> Nat
op height_intvl : Fuzzy_number -> Intvl
op div : Nat * Nat -> Nat

%% defuzzify(F) = (inf(M) + sup(M))/2
%% M=an interval [z] s.t. F(z) = height(F) = one

def defuzzify_1(F) =
div((inf(height_intvl(F))+ sup(height_intvl(F))),(1 + 1))

axiom inf_def is
fa(I: Intvl, a: Nat, x: Nat)
(inf(I) = a <=>

(x in? I) => a <= x)

%% We do not need to define sup again here.
%% sup is called from FUZZY_ARITHM

axiom height_intvl_def is
fa(F: Fuzzy_number, I: Intvl, x: Nat)
(height_intvl(F) = I <=>

F(x) = 100 <=> (x in? I))

endspec

%% Formal Information Fusion Library Specs
%% DEFUZZIFICATION 2
%% Defuzzification is defined.

DEFUZZIFICATION_2 = spec
import FUZZY_NUMBER, FUZZY_ARITHM

type Intvl = Set_of_Nat

op defuzzify_2 : Fuzzy_number -> Nat

APPENDIX C. FORMAL INFORMATION FUSION LIBRARY SPECS 2111

op inf : Intvl -> Nat
op alpha_intvl : Fuzzy_number -> Intvl
op div : Nat * Nat -> Nat

op alpha : Uni_intvl

%% defuzzify-2(F) = (inf(M) + sup(M))/2
%% M=an interval [z] s.t. F(z) = alpha-cut of F

def defuzzify_2(F) =
div((inf(alpha_intvl(F))+ sup(alpha_intvl(F))),(1 + 1))

axiom inf_def is
fa(I: Intvl, a: Nat, x: Nat)
(inf(I) = a <=>

(x in? I) => a <= x)

%% sup is called from FUZZY_ARITHM

axiom alpha_intvl_def is
fa(F: Fuzzy_number, I: Intvl, x: Nat)
(alpha_intvl(F) = I <=>

F(x) = alpha <=> (x in? I))

endspec

Appendix D

Subgoal for Theorem FuzzyEdge
Which Generated by Isabelle

proof (prove): step 1

goal (1 subgoal):
1. [| 0 < delta2; delta2 <= delta1 |]

==> uni_min
(uni_max

(uni_min
(fleq (%z. sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

(sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x + 1, y) xa,
tri_fuzzify_image (I, delta2) (x - 1, y) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x, y + 1) xa,
tri_fuzzify_image (I, delta2) (x, y - 1) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = xa)),

sup__c (Set__map
%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x, y) xa,
tri_fuzzify_image (I, delta2) (x, y) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x, y) xa,

112

APPENDIX D. SUBGOAL FOR THEOREM FUZZYEDGE WHICH GENERATED BY ISABELLE113

tri_fuzzify_image (I, delta2) (x, y) ya))
(%(x, y). x + y = ya))))

(%(x, y). x + y = ya))))
(%(x, y). int x - int y = int z)),

tri_fuzzify (0, delta)),
uni_max
(fgeq (%z. sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

(sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x + 1, y + 1) xa,
tri_fuzzify_image (I, delta2) (x - 1, y + 1) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x, 2 + y) xa,
tri_fuzzify_image (I, delta2) (x, y) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = xa)),

sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x, y + 1) xa,
tri_fuzzify_image (I, delta2) (x, y + 1) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x, y + 1) xa,

tri_fuzzify_image (I, delta2) (x, y + 1) ya))
(%(x, y). x + y = ya))))

(%(x, y). x + y = ya))))
(%(x, y). int x - int y = int z)),

tri_fuzzify (0, delta)),
fgeq (%z. sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

(sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (2 + x, y) xa,
tri_fuzzify_image (I, delta2) (x, y) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

APPENDIX D. SUBGOAL FOR THEOREM FUZZYEDGE WHICH GENERATED BY ISABELLE114

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x + 1, y + 1) xa,
tri_fuzzify_image (I, delta2) (x + 1, y - 1) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = xa)),

sup__c (Set__map
(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x + 1, y) xa,

tri_fuzzify_image (I, delta2) (x + 1, y) ya))
(%(x, y). x + y = xa)),
sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x + 1, y) xa,

tri_fuzzify_image (I, delta2) (x + 1, y) ya))
(%(x, y). x + y = ya))))

(%(x, y). x + y = ya))))
(%(x, y). int x - int y = int z)),

tri_fuzzify (0, delta)))),
uni_min
(fgeq (%z. sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

(sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x + 1, y) xa,
tri_fuzzify_image (I, delta2) (x - 1, y) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x, y + 1) xa,
tri_fuzzify_image (I, delta2) (x, y - 1) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = xa)),

sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x, y) xa,
tri_fuzzify_image (I, delta2) (x, y) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

APPENDIX D. SUBGOAL FOR THEOREM FUZZYEDGE WHICH GENERATED BY ISABELLE115

(tri_fuzzify_image (I, delta2) (x, y) xa,
tri_fuzzify_image (I, delta2) (x, y) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = ya))))

(%(x, y). int x - int y = int z)),
tri_fuzzify (0, delta)),

uni_max
(fleq (%z. sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

sup__c (Set__map
(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x + 1, y + 1) xa,
tri_fuzzify_image (I, delta2) (x - 1, y + 1) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x, 2 + y) xa,
tri_fuzzify_image (I, delta2) (x, y) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = xa)),

sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x, y + 1) xa,
tri_fuzzify_image (I, delta2) (x, y + 1) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x, y + 1) xa,
tri_fuzzify_image (I, delta2) (x, y + 1) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = ya))))

(%(x, y). int x - int y = int z)),
tri_fuzzify (0, delta)),

fleq (%z. sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (2 + x, y) xa,
tri_fuzzify_image (I, delta2) (x, y) ya))

(%(x, y). x + y = xa)),

APPENDIX D. SUBGOAL FOR THEOREM FUZZYEDGE WHICH GENERATED BY ISABELLE116

sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x + 1, y + 1) xa,
tri_fuzzify_image (I, delta2) (x + 1, y - 1) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = xa)),

sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map
(%(xa, ya)

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x + 1, y) xa,
tri_fuzzify_image (I, delta2) (x + 1, y) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x + 1, y) xa,
tri_fuzzify_image (I, delta2) (x + 1, y) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = ya))))

(%(x, y). int x - int y = int z)),
tri_fuzzify (0, delta))))),

FuzzyEdgeDetection2_FUZZY_REASONING.fequal
(%z. sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

(sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x + 1, y) xa,
tri_fuzzify_image (I, delta2) (x - 1, y) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

(tri_fuzzify_image (I, delta2) (x, y + 1) xa,
tri_fuzzify_image (I, delta2) (x, y - 1) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = xa)),

sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

(tri_fuzzify_image (I, delta2) (x, y) xa,
tri_fuzzify_image (I, delta2) (x, y) ya))

%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).

APPENDIX D. SUBGOAL FOR THEOREM FUZZYEDGE WHICH GENERATED BY ISABELLE117

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta2) (x, y) xa,
tri_fuzzify_image (I, delta2) (x, y) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = ya))))
(%(x, y). int x - int y = int z)),

tri_fuzzify (0, delta)))
<= uni_min

(uni_max
(uni_min

(fleq (%z. sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x + 1, y) xa,
tri_fuzzify_image (I, delta1) (x - 1, y) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, y + 1) xa,
tri_fuzzify_image (I, delta1) (x, y - 1) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = xa)),

sup__c (Set__map
(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, y) xa,
tri_fuzzify_image (I, delta1) (x, y) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, y) xa,
tri_fuzzify_image (I, delta1) (x, y) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = ya))))

(%(x, y). int x - int y = int z)),
tri_fuzzify (0, delta)),

ni_max
(fgeq (%z. sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

(sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c

(Set__map

APPENDIX D. SUBGOAL FOR THEOREM FUZZYEDGE WHICH GENERATED BY ISABELLE118

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x + 1, y + 1) xa,
tri_fuzzify_image (I, delta1) (x - 1, y + 1) ya))

(%(x, y). x + y = xa)),
sup__c

(Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, 2 + y) xa,
tri_fuzzify_image (I, delta1) (x, y) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = xa)),

sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min (sup__c
(Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, y + 1) xa,
tri_fuzzify_image (I, delta1) (x, y + 1) ya))

(%(x, y). x + y = xa)),
sup__c

(Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, y + 1) xa,
tri_fuzzify_image (I, delta1) (x, y + 1) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = ya))))

(%(x, y). int x - int y = int z)),
tri_fuzzify (0, delta)),
fgeq (%z. sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

(sup__c
(Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (2 + x, y) xa,
tri_fuzzify_image (I, delta1) (x, y) ya))

(%(x, y). x + y = xa)),
sup__c

(Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x + 1, y + 1) xa,
tri_fuzzify_image (I, delta1) (x + 1, y - 1) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = xa)),

sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c

(Set__map
(%(xa, ya).

APPENDIX D. SUBGOAL FOR THEOREM FUZZYEDGE WHICH GENERATED BY ISABELLE119

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x + 1, y) xa,
tri_fuzzify_image (I, delta1) (x + 1, y) ya))

(%(x, y). x + y = xa)),
sup__c

(Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x + 1, y) xa,
tri_fuzzify_image (I, delta1) (x + 1, y) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = ya))))

(%(x, y). int x - int y = int z)),
tri_fuzzify (0, delta)))),

uni_min
(fgeq (%z. sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x + 1, y) xa,
tri_fuzzify_image (I, delta1) (x - 1, y) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, y + 1) xa,
tri_fuzzify_image (I, delta1) (x, y - 1) ya))

(%(x, y). x + y = ya))))
%(x, y). x + y = xa)),

up__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, y) xa,

tri_fuzzify_image (I, delta1) (x, y) ya))
(%(x, y). x + y = xa)),

sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, y) xa,

tri_fuzzify_image (I, delta1) (x, y) ya))
(%(x, y). x + y = ya))))

(%(x, y). x + y = ya))))
(%(x, y). int x - int y = int z)),

tri_fuzzify (0, delta)),
uni_max
(fleq (%z. sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

APPENDIX D. SUBGOAL FOR THEOREM FUZZYEDGE WHICH GENERATED BY ISABELLE120

(sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c

(Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x + 1, y + 1) xa,
tri_fuzzify_image (I, delta1) (x - 1, y + 1) ya))

(%(x, y). x + y = xa)),
sup__c

(Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, 2 + y) xa,
tri_fuzzify_image (I, delta1) (x, y) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = xa)),

sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c

(Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, y + 1) xa,

tri_fuzzify_image (I, delta1) (x, y + 1) ya))
(%(x, y). x + y = xa)),

sup__c
(Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, y + 1) xa,

tri_fuzzify_image (I, delta1) (x, y + 1) ya))
(%(x, y). x + y = ya))))

(%(x, y). x + y = ya))))
(%(x, y). int x - int y = int z)),

tri_fuzzify (0, delta)),
leq (%z. sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

sup__c (Set__map
%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c

(Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (2 + x, y) xa,
tri_fuzzify_image (I, delta1) (x, y) ya))

(%(x, y). x + y = xa)),
sup__c

(Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x + 1, y + 1) xa,

APPENDIX D. SUBGOAL FOR THEOREM FUZZYEDGE WHICH GENERATED BY ISABELLE121

tri_fuzzify_image (I, delta1) (x + 1, y - 1) ya))
(%(x, y). x + y = ya))))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

(sup__c
(Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x + 1, y) xa,

tri_fuzzify_image (I, delta1) (x + 1, y) ya))
(%(x, y). x + y = xa)),

sup__c
(Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x + 1, y) xa,
tri_fuzzify_image (I, delta1) (x + 1, y) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = ya))))

(%(x, y). int x - int y = int z)),
tri_fuzzify (0, delta))))),

FuzzyEdgeDetection2_FUZZY_REASONING.fequal
(%z. sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min

(sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x + 1, y) xa,
tri_fuzzify_image (I, delta1) (x - 1, y) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min
(tri_fuzzify_image (I, delta1) (x, y + 1) xa,
tri_fuzzify_image (I, delta1) (x, y - 1) ya))

(%(x, y). x + y = ya))))
(%(x, y). x + y = xa)),

sup__c (Set__map
(%(xa, ya).

FuzzyEdgeDetection2_FUZZY_SET.min
(sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min (tri_fuzzify_image
(I, delta1) (x, y) xa,
tri_fuzzify_image (I, delta1) (x, y) ya))

(%(x, y). x + y = xa)),
sup__c (Set__map

(%(xa, ya).
FuzzyEdgeDetection2_FUZZY_SET.min (tri_fuzzify_image
(I, delta1) (x, y) xa,

APPENDIX D. SUBGOAL FOR THEOREM FUZZYEDGE WHICH GENERATED BY ISABELLE122

tri_fuzzify_image (I, delta1) (x, y) ya))
(%(x, y). x + y = ya))))

(%(x, y). x + y = ya))))
(%(x, y). int x - int y = int z)),

tri_fuzzify (0, delta)))

	Northeastern University
	January 01, 2009
	Specification and formal verification of fuzzy information processing for the case of edge detection
	Kemal Keskin
	Recommended Citation

