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Abstract

We propose new methods to improve nonlinear filtering and robust estimation algorithms.

In the first part of the dissertation, we propose an approach to approximating the Chapman-

Kolmogorov equation (CKE) for particle-based nonlinear filtering algorithms, using a new

proposal distribution and the improved Fast Gauss Transform (IFGT). The new proposal

distribution, used to obtain a Monte Carlo (MC) approximation of the CKE, is based on the

proposal distribution found in the auxiliary marginal particle filter (AMPF). By using MC

integration to approximate the integrals of the AMPF proposal distribution as well as the

CKE, we demonstrate significant improvement in terms of both error and computation time.

We consider the additive state noise case where the evaluation of the CKE is equivalent

to performing kernel density estimation (KDE), thus fast methods such as the IFGT can

be used. We also provide much improved performance bounds for the IFGT, and which

unlike the previous bound, are consistent with the expectation that the error decreases as

the truncation order of the IFGT increases. The experimental results show that we can

obtain similar error to the sequential importance sampling (SIS) particle filter, while using

fewer particles.

In the second part, we consider the problem of estimating a Gaussian random parameter

vector that is observed through a linear transformation with added white Gaussian noise

when there are both eigenvalue and elementwise uncertainties in the covariance matrix.

When the covariance matrix is known then the solution to the problem is given by the

minimum mean squared error (MMSE) estimator. Recently a minimax approach in which the

estimator is chosen to minimize the worst case of two criteria called the difference regret [28]

and the ratio regret [29] in an eigenvalue uncertainty region was proposed. A closed form

solution was also presented under the assumption that the Gram matrix of the model matrix

weighted by the inverse covariance matrix of the noise vector, and the random parameter’s

covariance matrix, are diagonalized by the same unitary matrix (we refer to this as the joint

diagonalizability assumption). This assumption significantly limits the applicability of the
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estimator. In this work we present a new criterion for the minimax estimation problem

which we call the generalized difference regret (GDR), and derive the minimax estimator

which is based on the GDR criterion where the region of uncertainty is defined not only

using upper and lower bounds on the eigenvalues of the parameter’s covariance matrix, but

also using upper and lower bounds on the individual elements of the covariance matrix itself.

Furthermore the GDR estimator does not require the assumption of joint diagonalizability

and it can be obtained efficiently using semidefinite programming. The experimental results

show that we can obtain improved mean squared error (MSE) results compared to the MMSE

estimator and the difference and ratio regret estimators.

Finally, we propose a new approach for robust parameter estimation under sensor po-

sitional uncertainty of parameters which are used as features for an unexploded ordnance

(UXO) classification scheme. Obtaining better parameter estimates by addressing the un-

certainty that may be present in the locations of the sensors, is important in order to obtain

improved classification results. Future work will include simulation and validation of the

new approach with a UXO classification scheme.
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Chapter 1

Introduction

Many areas of signal processing require the estimation of some parameter from a set of

observations. When the parameter takes values from a discrete and finite set then the

problem is called hypothesis testing, and the area of research is known as detection theory.

When the parameter takes values from a continuous set then the area of research is known

as estimation theory. As explained in [39] a model for estimation has four components:

• Parameter Space. The domain of the parameter that we wish to estimate, this could

be Rn for an n dimensional parameter vector.

• Probabilistic Mapping from the Parameter Space to the Observation Space. The pa-

rameter is related to the observation through this probability distribution.

• Observation Space. The domain of the observation, this could be Rm for an m dimen-

sional observation vector.

• Estimation Rule. The estimate of the parameter is obtained using the estimation

rule which is a mapping from the observation space into the parameter space. The

estimation rule is designed such that it satisfies some optimality criteria.

Most estimation methods are characterized as either maximum likelihood or Bayesian estima-

tion. In maximum likelihood estimation (ML) it is assumed that the parameter is completely

unknown, i.e. there is no apriori information about its distribution. On the other hand in

Bayesian estimation it is assumed that the parameter is a realization of some probability

distribution. One type of a Bayesian estimator is the maximum aposteriori (MAP) estimator

which maximizes the posterior distribution.
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One example of an estimation model that is often used in practice is the linear model

of the form y = Hx + w, where a vector x is observed through a linear transformation H

and corrupted by additive Gaussian noise w. When there is no statistical information about

the vector x then the ML estimator is equivalent to the least squares estimate, therefore the

estimate x̂ is optimal in the sense that it minimizes E‖y − ŷ‖2, where y is the observation

vector, and ŷ = Hx̂ is the estimated observation vector based on the estimated vector x̂. If

in addition we assume that x is a Gaussian random vector then the model is known as the

linear Gaussian model and it can be shown that the MAP approach also minimizes the MSE

of the estimate of x, i.e. E‖x− x̂‖2. A particular case of the linear Gaussian model is when

the vector x evolves temporally in the form of a linear dynamical system with Gaussian

additive noise. The vector x is known as the state and the Bayes estimate at each time

instant can be obtained recursively using the Kalman filter [1]. The problem is also known

as linear filtering. The Kalman filter is optimal in the sense that it minimizes the mean

squared error of the estimate at each time step.

In practice some of the assumptions in the aforementioned estimation models may be

invalid. For example, in the linear Gaussian model the matrix H or the covariance matrix

of x may only be known to lie in some region of uncertainty, thus the least squares and

MMSE estimators are not optimal. The robust estimation approach optimizes a criteria

that is less sensitive to such uncertainties in the estimation model. In the linear filtering

example the true dynamics are often nonlinear and therefore the Kalman filter is no longer

optimal, therefore leading to the use of nonlinear filters which approximate the optimal filter

and perform better than the Kalman filter under such conditions.

One of the earliest approaches to nonlinear filtering is the extended Kalman filter (EKF)

[1] where the nonlinear functions are replaced with their first order Taylor series approxima-

tion. More recent nonlinear filtering approaches are known as particle filters (PF) [8] where

the probability distribution of the state is approximated using weighted samples in the state

space, such that the state estimate can be obtained as the weighted mean of the samples.

The samples are obtained using a process which is common to all PF algorithms and is

known as importance sampling (IS). Since sampling from the state’s posterior distribution

is usually very hard, using IS one can sample from some proposal distribution with the same

support and evaluate the weight of the sample using the posterior. The PF approach has

been shown to provide significant improvement compared to the EKF in areas such as target

tracking and communications [16].
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In order to deal with the model uncertainties in the estimation model one popular ap-

proach is to use a minimax estimator, which is the estimator that minimizes the worst case

of some cost function in the region of uncertainty [40] of the parameter. Recently there

has been much work published regarding such minimax robust estimation using the linear

Gaussian model with model uncertainties e.g. [26]- [29].

The contribution of this work in the area of nonlinear filtering is to consider the use

of the IFGT to perform nonlinear filtering. We also present a new proposal distribution

which is shown experimentally to improve the MSE performance significantly, and derive

new performance bounds for the IFGT which are significantly tighter than the previous

bound. We demonstrate how these bounds facilitate the choice of the IFGT parameters for

the filtering algorithm in practice.

The contribution of this work in the area of robust estimation is to consider the minimax

estimation of a random parameter in a linear Gaussian model. In a recent work in this

area [28, 29] new minimax estimators were developed assuming that the Gram matrix [40]

of H weighted by the inverse covariance matrix of the noise vector, and the random pa-

rameter’s covariance matrix, are diagonalized by the same unitary matrix. This assumption

significantly limits the applicability of these estimators. In this dissertation we derive a

new minimax which we call the generalized difference regret (GDR) estimator which lifts

the joint diagonalizability by the same unitary matrix assumption. Furthermore the uncer-

tainty region is expressed as the intersection set of the eigenvalue uncertainty region and an

elementwise uncertainty region, unlike the previous estimators in which the region of uncer-

tainty was expressed using lower and upper bounds on each of the eigenvalues alone. This

leads to a smaller uncertainty region which may be less pessimistic than the uncertainty set,

and therefore lead to improved results in cases where the SNR is low. The new estimator

can be obtained efficiently using semidefinite programming. Using the robust optimization

techniques considered for the estimation problem in the linear Gaussian model, we also pro-

pose a new approach for robust estimation of certain parameters that are used as features

for an unexploded ordnance (UXO) classification algorithm, when there exists uncertainty

regarding their exact position. Specifically, we build on the minimax the approach presented

in [57] which was solved using an approximate dynamic programming technique, and present

a nonlinear programming solution that is based on replacing the maximization problem with

the upper bound that is given by the dual form of the problem.

The dissertation is organized as follows: In Chapter 2 we provide the background on

fast Kernel density estimation (KDE) and nonlinear filtering algorithms, and in Chapter 3
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we provide the background on convex optimization, robust minimax estimation and sensor

networks. In Chapter 4 we derive new performance bounds for the IFGT and perform

nonlinear filtering using a new proposal distribution and using the IFGT. In Chapter 5 we

develop the new GDR robust minimax estimator and present its experimental results. In

Chapter 6 we develop a nonlinear programming approach for robust parameter estimation

with sensor positional uncertainty for the UXO classification problem. In Chapter 7 we make

concluding remarks and present directions for future research in this field.
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Chapter 2

Background- Fast Kernel Density

Estimation and Nonlinear Filtering

In this chapter we provide the theoretical background about linear and nonlinear filtering

as well as background about fast KDE methods. We later show how KDE methods and in

particular the IFGT can be used to perform nonlinear filtering.

2.1 Fast KDE

KDE is most often used to determine a non-parametric PDF from a set of samples {sj}N
j=1 [3].

The KDE evaluated at a target point t then takes the form

G(t) ,
N∑

j=1

qjK

(
t− sj

h

)
(2.1)

where K(·) is a kernel function with scale parameter h (the “bandwidth”), sj ∈ RD are

referred to as source points, qj ∈ R are the source strengths, and D denotes the dimension.

For the purpose of obtaining a good non-parametric estimate of the PDF, the optimal band-

width h∗ has to be estimated [9]. Evaluating G(·) in (2.1) at N different target points has

quadratic computational complexity, therefore there have been several approaches suggested

in literature to reduce this computational complexity while compromising on the accuracy.

The different methods to fast evaluation of KDE rely on the divide and conquer approach

where either the source space or the joint source and target space are first partitioned into

different regions. Beyond the initial partitioning the various algorithms can be categorized

into discrete approximation techniques such as the single and dual tree algorithms, [4, 9]
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and continuous approximation algorithms such as the FGT and IFGT. The single and dual

tree algorithms are based on a space partitioning of the source and target points. This

space partitioning is then used in order to avoid computations whose overall contribution

is below some threshold. Furthermore, these algorithms can be used under several choices

of kernel functions and the speed of these methods is independent of the dimension. The

FGT applies only in the case of a Gaussian kernel where a Hermite polynomial expansion

is used to approximate the Gaussian kernel function beyond the initial space partitioning.

The Hermite expansion enables (2.1) to be approximated to any degree of accuracy using an

alternative expression whose computational complexity is linear in the number of samples,

however the computational constant grows exponentially with the dimension. The IFGT

solves this problem by using a different form of expansion for the Gaussian kernel such

that the computational constant grows more moderately with the dimension. Both the

FGT and IFGT can offer a significant speedup when the bandwidth is larger than the

optimal bandwidth, whereas the single and dual tree algorithms are most effective when

the bandwidth is smaller than the optimal bandwidth. This observation was used in [64] to

construct a hybrid dual tree FGT algorithm which was used in order to speed up the process

of estimating the optimal bandwidth. In such a scenario one has to compute a score function

for many choices of the bandwidth parameter which are different from the optimal one.

2.1.1 Discrete approximation techniques

Discrete approximation techniques are based on building a space-partitioning tree for a set

of points. The space partitioning tree, which is also known as a kd-tree [23], is a binary tree

data structure where in each bifurcation the points are split along one of the dimensions up

until the leaf level that holds a single point. Each node then represents a box that bounds all

the points that are in lower levels in the tree. Figure 2.1 shows the space partitioning that

is obtained using the kd-tree that is shown in Figure 2.2, where the black circles represent

the points within each bounding box. For the sake of presentation clarity, the kd-tree in

Figure 2.2 does not show partitioning until each point is bounded by a unique box, however

in a real kd-tree used in a fast KDE algorithm the leaf level includes a single point. Two

algorithms that make use of the kd-tree data structure to perform fast KDE evaluation are

the single tree and dual tree algorithms [9].

6



Figure 2.1: An example of the space partitioning obtained using a kd-tree

Single tree algorithm

The single tree algorithm uses a space partitioning tree for the source points. Subsequently

each target point is traversed along the tree and the bounding boxes are used to exclude the

source points whose distance is larger than a pre-specified constant from the target point.

Dual tree algorithm

The dual tree algorithm uses a space partitioning tree both for the source points and for the

target points. Subsequently both trees are traversed simultaneously such that larger chunks

of source and target points whose distance from each other is larger from a pre-specified

constant can be excluded from computation.

2.1.2 The fast Gauss transform

The FGT considers the special case where the kernel function in (2.1) is a Gaussian:

G(t) = κ
N∑

j=1

qje
−‖t−sj‖2/2σ2

(2.2)

7



Figure 2.2: An example of the kd tree for the space partitioning in Figure 2.1

where σ2 denotes the variance of the Gaussian kernel, and κ−1 = (2πσ2)
D
2 . The basis for the

FGT is the one dimensional Hermite expansion of the Gaussian function around point s∗ ∈ R:

e−(t−s)2/2σ2

=
∞∑

n=1

1

n!

(
s− s∗√

2σ

)n

hn

(
t− s∗√

2σ

)
(2.3)
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where t, s ∈ R and where hα(t) , (−1)α dα

dtα
e−t2 , and satisfies the recursion: hα+1(t) =

2thα(t)− 2αhα−1(t).

The extension to the multidimensional case is then obtained using the products of the

one dimensional expansions. We adopt the multi-index notation used in [5], where α =

(α1, . . . , αD) is a D dimensional tuple of nonnegative integers. For any t ∈ RD we define

tα = tα1
1 · · ·ααD

D , and hα(t)=hα1(t1) · · ·hαD
(tD). The factorial of the multi-index α is defined

as α! = α1! · · ·αD!, and the length is defined as |α| = α1 + · · ·+ αD. The multidimensional

expansion of a Gaussian around s∗ ∈ RD therefore takes the form

e−
‖t−s‖2

2σ2 =
∑
α≥0

1

α!
hα

(
∆t√
2σ

)(
∆s√
2σ

)α

(2.4)

where t, s ∈ RD, ∆t = t− s∗, and ∆s = s− s∗.

Truncating (2.4) after the first p terms and substituting into (2.2) yields

G(t) = κ ·
∑
α<p

Aαhα

(
∆t√
2σ

)
+ ET , (2.5)

Aα =
1

α!

N∑
j=1

qj

(
∆sj√

2σ

)α

, (2.6)

where ∆sj = sj − s∗, ET is the truncation error, the notation α < p denotes the set of all

multi-indices α with elements between 0 and p− 1, and Aα are the FGT coefficients.

Let NB sources with weights {qj}NB
j=1 lie in a D dimensional box with center sB and side

lengths 2rσ, with r < 1. Then the error ET due to truncating the series (2.5) after pD terms

satisfies the bound [6]:

|ET | ≤ QBεFGT
p (2.7)

where,

εFGT
p =

κ

(1− r)D

D−1∑
d=0

(
D

d

)
(1− rp)d

(
rp

√
p!

)D−d

(2.8)

and where QB =
∑NB

j=1 |qj|

The FGT partitions the source space into D dimensional boxes of side 2rσ with r < 1,

which are parallel to the axes. Each source point sj is then assigned to the box in which

it lies, and the FGT coefficients (2.6) for each box are computed using the sources assigned

to it where the s∗ for each box is the center of the box. The FGT evaluates each of the

target points at each of the (2n + 1)D n ∈ N nearest boxes, which adds an error which is
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bounded by Qe−2r2n2
due to ignoring all the source points in the other boxes. The truncation

error incurred by evaluating the target points at the (2n + 1)D nearest boxes using (2.5) is

bounded by QεFGT
p , where Q =

∑N
j=1 |qj|. Therefore the FGT can approximate the KDE to

any degree of accuracy.

As can be seen from (2.5) and (2.6), the computational complexity of the FGT is linear

with the number of samples, however since the number of FGT coefficients grows exponen-

tially with the dimension so does the computational constant. Since (2.5) has to be evaluated

at each cluster, the computational complexity of the FGT also grows linearly with the num-

ber of clusters. The FGT can also make use of translation operators which can reduce the

computational cost, however the computational constant still grows exponentially with the

dimension.

2.1.3 The improved fast Gauss transform

The IFGT [7] also deals with the Gaussian kernel case, however it uses another form of

expansion around a point s∗ ∈ RD instead of the Hermite expansion (2.4)

e−‖t−s‖2/2σ2

= e(−‖∆t‖2−‖∆s‖2+2∆tT ∆s)/2σ2

= e−
‖∆t‖2+‖∆s‖2

2σ2

∞∑
n=0

2n

n!

(
∆t∆s

2σ2

)n

(2.9)

where t, s ∈ RD, ∆t = t − s∗, ∆s = s − s∗, and where (2.9) follows from expanding the

exponent of the cross term using a Taylor expansion. Truncating (2.9) after the first p terms

and substituting into (2.2), we have:

G(t) = κe−‖∆t‖2/2σ2 ·
∑
|α|<p

Ãα

(
∆t

σ

)α

+ ET , (2.10)

Ãα =
1

α!

N∑
j=1

q̃j

(
∆sj

σ

)α

, (2.11)

where |α| < p denotes the set of multi-indices α whose sum of elements is less than p, and

where q̃j = qje
−‖∆sj‖2/2σ2

. Since the summation in (2.10) is over all the IFGT coefficients

with multi-index α such that |α| < p, then the computational constant grows more moder-

ately with the dimension compared to the computational constant of the FGT that grows

exponentially with the dimension.

Let rt and rs denote upper bounds on ‖∆t‖ and ‖∆s‖ respectively, and let NB sources
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with weights {qj}NB
j=1 lie in a ball with center sB and radius rs. Then the error ET due

to truncating the series (2.10) after the pth order, when evaluating a target point within

distance rt from the ball’s center, satisfies the bound [7]:

|ET | ≤ QBεIFGT
p (2.12)

where

εIFGT
p = κ

2p

p!

(
rt

σ

)p(
rs

σ

)p

(2.13)

and where QB =
∑NB

j=1 |qj|.

The IFGT clusters the source points into balls with radius rs and computes the IFGT

coefficients Ãα for each ball using (2.11). For each target point the IFGT finds the clusters

whose centers lie within the range rt, and evaluates the target point using (2.10) at each

of these clusters. The error due to ignoring all the source points outside of range rt from

the clusters’ centers is bounded by Qe−(rt−rs)2/2σ [14]. The truncation error incurred by

evaluating the target point at each of the clusters is bounded by QεIFGT
p , where Q =

∑N
j=1 |qj|.

Therefore for every choice of rs rt and p, we can bound the approximation error of the KDE.

However since the truncation error and the error due to ignoring the source points outside

of range rt are coupled, it is unclear from this formulation how to choose rs and rt such that

the approximation is smaller than a specified value Qε. Furthermore as was noted in [14,17]

the bound (2.12) is very pessimistic. An approach to determining the truncation order and

the parameters rt,rs which is based on a bound which is tighter than (2.12) was presented

in [17]. First in order to decouple the truncation error and the error due to ignoring source

points outside of range rt, it is proposed to use rt of the form

rt = rs + R (2.14)

where R ∈ R, in which case the error due to ignoring source points outside of range rt is

Qe−R2/2σ and we can choose R such that this error is smaller than Qε. Second, the source

points are clustered into K balls where K is chosen according to some heuristic criteria

which is related to the computational constant of the IFGT rather than its accuracy. The

parameter rs for each ball can then be obtained as the radius of the ball. The truncation

order p for each cluster is then determined such that εIFGT2
p (‖∆sj‖/σ) < ε ∀j = 1, . . . , NB,

11



where the truncation error for the Gaussian kernel is given by

εIFGT2
p (r0) = κ

2p

p!
(r0‖τ‖∗)e−(r0−‖τ‖∗)2 (2.15)

where

‖τ‖∗ = min(
r0 +

√
r2
0 + 2p

2
,
rt

σ
) (2.16)

The truncation error ET in (2.10) is therefore bounded by

|ET | ≤
N∑

j=1

|qj|εIFGT2
p (‖∆sj‖/σ) ≤ Qε (2.17)

Since the number of clusters is chosen based on a heuristic criteria rather than the bound

and subsequently the truncation order is chosen such that a specified upper bound is satisfied,

there is no guarantee that this choice is optimal under any criteria.

2.2 Filtering

Filtering is concerned with dynamic systems of the form:

xk+1 = fk(xk, wk) (2.18)

zk = hk(xk) + vk (2.19)

where xk and zk denote the state and measurement vectors at time k respectively, wk, and

vk denote two independent noise sequences, and f(), h() can be any two functions of the

state vector. The aim of filtering is to find the posterior state distribution p(xk|z1:k), where

z1:k , {z1, ...,zk}. The posterior state distribution can be computed recursively using [11]:

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2.20)

p(xk|z1:k) =
1

ck

p(zk|xk)p(xk|z1:k−1) (2.21)

ck ,
∫

p(zk|xk)p(xk|z1:k−1)dxk (2.22)

When the state and measurement equations are linear and the noises are Gaussian, the

one step ahead prediction PDF p(xk|z1:k−1) and the posterior PDF p(xk|z1:k) are Gaus-

sian and (2.20)-(2.22) can be evaluated analytically using the Kalman filter [1], otherwise

12



the recursive equations can only be approximated and the problem is known as nonlinear

filtering. The different approaches to approximating (2.20)-(2.22) can be categorized into

deterministic and sequential Monte Carlo (SMC) methods. The deterministic methods such

as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) are in close

relation to the Kalman filter and are based on the assumption that the posterior and one

step ahead prediction PDFs are Gaussian. The SMC approach, which is also known as

particle filtering [8, 21], uses discrete samples to approximate the posterior. Most particle

filters approximate the joint density p(x1:k|z1:k) although only the marginal p(xk|z1:k) is of

interest, thereby necessitating the use of a resampling stage. The other paradigm to particle

filtering [2, 11] approximates the marginal p(xk|z1:k) directly and was termed the marginal

particle filter (MPF) in [2]. The MPF uses Monte Carlo (MC) integration and importance

sampling (IS) to approximate the integrals in the Bayes recursion equations (2.20)-(2.22).

Using IS requires the definition of a proposal distribution from which one draws the sam-

ples that are used to obtain the MC approximation of the integral. Although in theory any

probability density function (PDF) with the same support as the posterior can be used, in

practice due to the limited computational resources it is advisable that the proposal be as

similar as possible to the posterior in order to obtain the best performance.

2.2.1 The Kalman filter

The discrete time Kalman filter applies to the case where the state and measurement equa-

tions are linear thus (2.18), (2.21) take the form:

xk+1 = F kxk + Gkwk (2.23)

zk = HT
k xk + vk (2.24)

Additionally assume that the zero mean Gaussian noise sequences wk and vk satisfy

E[vkv
T
` ] = Rkδk` E[wkw

T
` ] = Qkδk`, (2.25)

and the initial sate x0 is a Gaussian random variable with mean x̄0 and covariance P 0

independent of wk and vk. Under these conditions the one step ahead prediction and the

posterior PDFs are Gaussian and are fully defined by their mean and covariance matrix.

13



The Kalman filter can be used to compute the estimates

x̂k|k−1 = E[xk|z1:k−1] x̂k|k = E[xk|z1:k], (2.26)

and similarly the associated error covariance matrices

Σk|k−1 = E{[xk − x̂k|k−1][xk − x̂k|k−1]
T |z1:k−1} (2.27)

and

Σk|k = E{[xk − x̂k|k][xk − x̂k|k]
T |z1:k}. (2.28)

The Kalman filter computes the state and covariance estimates recursively as follows:

x̂k|k = x̂k|k−1 + Σk|k−1Hk(H
T
k Σk|k−1Hk + Rk)

−1(zk −HT
k x̂k|k−1) (2.29)

Σk|k = Σk|k−1 −Σk|k−1Hk(H
T
k Σk|k−1Hk + Rk)

−1HT
k Σk|k−1 (2.30)

x̂k+1|k = F kx̂k|k (2.31)

Σk+1|k = F kΣk|kF
T
k + GkQkG

T
k (2.32)

where the filter is initialized using x̂0|−1 = x̄0 and Σ0|−1 = P 0.

2.2.2 Deterministic nonlinear filtering

The extended Kalman filter

The EKF approximates the nonlinear functions in the state space model with a first order

Taylor series around the state and noise expected means. The linearized state space model

therefore takes the form

xk+1 = F kxk + Gkwk + uk (2.33)

zk = HT
k xk + vk + yk (2.34)

where

F k =
∂fk(x, w)

∂x

∣∣∣∣∣x=x̂k|k
w=0

, HT
k =

∂hk(x)

∂x

∣∣∣∣∣
x=x̂k|k

, Gk =
∂fk(x, w)

∂w

∣∣∣∣∣x=x̂k|k−1

w=0

(2.35)
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and

uk = fk(x̂k|k)− F kx̂k|k , yk = hk(x̂k|k−1)−HT
k x̂k|k−1 (2.36)

The Kalman filter is then used with the linearized dynamic system and the equations are a

simple variation of (2.29)-(2.32):

x̂k|k = x̂k|k−1 + Σk|k−1Hk(H
T
k Σk|k−1Hk + Rk)

−1(zk − yk)) (2.37)

Σk|k = Σk|k−1 −Σk|k−1Hk(H
T
k Σk|k−1Hk + Rk)

−1HT
k Σk|k−1 (2.38)

x̂k+1|k = fk(x̂k|k) (2.39)

Σk+1|k = F kΣk|kF
T
k + GkQkG

T
k (2.40)

2.2.3 Particle filtering

The particle filters (PF) paradigm to nonlinear filtering replaces the parametric Gaussian

approximation of the state distribution with a non-parametric discrete particle approxima-

tion where each particle consists a sample and a weight. Given sufficient particles one can

approximate any distribution of the state vector. In order to obtain this approximation PF

rely on importance sampling, and therefore require the design of proposal distributions that

approximate the posterior distribution. Although in theory any probability density function

(PDF) with the same support as the posterior can be used, in practice due to the limited

computational resources it is advisable that the proposal be as similar as possible to the

posterior in order to obtain the best performance. Most PF approximate the joint density

p(x1:k|z1:k) although only the marginal p(xk|z1:k) is of interest, thereby necessitating the

use of a resampling stage in which samples with high weights are multiplied and samples

with low weights are discarded. Another class of PF which is called the marginal particle

filter (MPF) uses Monte Carlo (MC) integration and importance sampling (IS) to approx-

imate the integrals in the Bayes recursion equations (2.20)-(2.22), therefore the marginal

p(xk|z1:k) is approximated directly. The use of kernel density estimation (KDE) in parti-

cle filters has been considered in [2, 19, 20], however whereas in [19, 20] KDE is used as a

part of the resampling stage, in [2] the KDE was regarded as another interpretation of the

Chapman-Kolmogorov equation (CKE) (2.20).
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MC integration and IS

Consider the generic problem of evaluating integrals of the form:

I = Ef [h(x)] =
∫

h(x)f(x)dx. (2.41)

and suppose that f() is a valid PDF. The MC framework approximates (2.41) by drawing

the samples (x1, . . . ,xN) from f(x), and approximating (2.41) using the empirical average

IN =
1

N

N∑
i=1

h(xi), (2.42)

where IN converges almost surely to I [10].

When it is difficult to sample from the distribution f(x), then IS can be used to approx-

imate the integral. Assume that we can obtain samples from a proposal distribution π(x)

that satisfies the condition support(π) ⊇ support(f), then by rewriting (2.41) as

I = Eπ[h(x)
f(x)

π(x)
] =

∫
h(x)

f(x)

π(x)
π(x)dx, (2.43)

we can use the the MC integration framework to approximate (2.43). By drawing the samples

(x1, . . . ,xN) from π(x) then the approximation takes the form

IN =
1

N

N∑
i=1

h(xi)
f(xi)

π(xi)
, (2.44)

and since (2.44) is a Monte Carlo estimator it converges almost surely to I. Although

the IS framework applies to a broad range of proposal distributions, the convergence rate

depends on how close the proposal distribution π(x) is to f(x). For poor choices of π(x)

the convergence rate may be quite slow.

Another important factor influencing the quality of the MC approximation is the quality

of the samples obtained from the proposal distribution. Using entirely random sampling

does not explore the sample space in the most uniform way, whereas quasi-MC (QMC)

methods [11] (also known as low discrepancy point sets) which are deterministic in nature,

lead to a more uniform exploration of the sample space. QMC methods have been shown

empirically as well as theoretically to lead to a faster convergence compared to entirely

random sampling. There have been several approaches presented in literature to generating

QMC points [12]. In this work we use the Halton sequence which pertains to the digital
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nets low discrepancy point sets family. The use of QMC methods in this work is limited to

sampling from a Gaussian mixture of the form

N∑
i=1

w
(i)
k p(xk|x(i)

k−1), (2.45)

where {w(i)}N
i=1 are weights and p(xk|x(i)

k−1) is a Gaussian with mean µ
(i)
k and covariance

matrix Σ
(i)
k . The exact details regarding QMC sampling of this form are given in algorithm 1.

A comprehensive study on the use of QMC methods for nonlinear filtering was presented

in [11].

Algorithm 1 : [QMC sampling from a Gaussian mixture]

• Draw {j(`)}N
`=1 from the probability mass function {w(i)

k−1}N
i=1.

• for i = 1, . . . , N

– Find the set Ei , {`|j(`) = i}, and let |Ei| denote the number of elements in Ei.

– Generate |Ei| QMC points {u(`)}|Ei|
`=1 in [0, 1)D.

– Transform {u(`)}|Ei|
`=1 to {x(j)}|Ei|

j=|Ei−1|+1:

∗ perform Cholesky decomposition on Σ
(i)
k , i.e. Σ

(i)
k = RT R

∗ transform {u(`)}|Ei|
`=1 to {y(`)}|Ei|

`=1, via y
(`)
d = φ−1(u

(`)
d ), d = 1, . . . , D, where

φ(x) = (1/
√

2π)
∫ x
−∞ exp (−w2/2)dw.

∗ set x(|Ei−1|+`) = µ
(i)
k + Ry(`), ` = 1, . . . , |Ei|.

end for

Sequential importance sampling

The sequential importance sampling (SIS) PF approximates the joint density p(x1:k−1|z1:k−1)

using N samples {w(i)
1:k−1, x

(i)
1:k−1}. The samples for time k are obtained by drawing from a

proposal distribution x
(i)
k ∼ q(xk|x(i)

0:k−1, y1:k) and setting x
(i)
1:k = (x

(i)
1:k−1, x

(i)
k ) ∀i = 1 . . . N .

The weights are then updated using

w
(i)
1:k ∝ w

(i)
1:k−1

p(zk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
0:k−1, z1:k)

. (2.46)
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and subsequently normalized such that
∑N

i=1 w
(i)
1:k = 1. The choice of proposal distribution

that has been advocated by many researchers [24] is q(xk|x(i)
0:k−1, z1:k) = p(xk|x(i)

0:k−1, z1:k),

however since often it may be hard to sample from this distribution a popular choice is to use

q(xk|x(i)
0:k−1, z1:k) = p(xk|x(i)

k−1). The main drawback with the latter choice is that it does not

incorporate the latest observation zk, therefore it may require the use of more particles in

the filtering algorithm. Another limitation associated with the SIS PF is the degeneracy of

the particles over time [24], where after a few iterations one of the normalized weights tends

to 1 while the remaining weights tend to zero. In order to avoid the degeneracy problem it

is necessary to resample the distribution once every few iterations, such that particles with

large weights are multiplied and particles with small weights are discarded.

The marginal particle filter

The nonlinear filtering approach that we use in this work follows that in [11] where IS and

QMC methods are used to approximate the integrals in (2.20)-(2.22). Assuming we have a

proposal denisty π(xk) from which we can sample easily, then using (2.44) to approximate

the integrals we can replace the recursion (2.20)-(2.22) with:

p̂(xk|z1:k−1) =
N∑

i=1

w
(i)
k−1p(xk|x(i)

k−1) (2.47)

w
(i)
k ,

p̂(x
(i)
k |z1:k)

π(x
(i)
k )

=
1

ĉk

p(zk|x(i)
k )

p̂(x
(i)
k |z1:k−1)

π(x
(i)
k )

(2.48)

where ĉk =
N∑

i=1

p(zk|x(i)
k )

p̂(x
(i)
k |z1:k−1)

π(x
(i)
k )

(2.49)

and the state estimator can also be approximated using the IS framework:

x̂k ,
1

c̃k

∫
xk · p(zk|xk)p̂(xk|z1:k−1)dxk ≈

N∑
i=1

x
(i)
k w

(i)
k (2.50)

where c̃k =
∫

p(zk|xk)p̂(xk|z1:k−1)dxk, and the result is obtained when using IS to approxi-

mate both the integrand and c̃k.

The MPF filtering algorithm is summarized as follows.
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Algorithm 2 : [The MPF]

• Initialization: Sample N points
{
x

(i)
0

}N

i=1
from the prior distribution p(x0), and set

w
(i)
0 = 1

N
, i = 1, . . . , N .

• for k = 1, 2, . . .

– Sample N points
{
x

(i)
k

}N

i=1
from the proposal distribution π(xk).

– Compute the predictive density p̂(x
(i)
k |z1:k−1), i = 1, . . . , N , using (2.47).

– Compute the posterior weights w
(i)
k , i = 1, . . . , N , using (2.48) and (2.49).

– Compute the state estimator using (2.50).

end for

The choice of the proposal distribution has a significant affect on the performance of the

MPF. Next we describe several choices for proposal distributions.

1. SIS- If we take

π(xk) = p(xk|z1:k−1) (2.51)

it simplifies (2.48)

w
(i)
k ∝ p(zk|x(i)

k ) (2.52)

thereby avoiding the computationally expensive stage of evaluating the predictive den-

sity values (2.47). It can easily be verified that the use of the MPF using this proposal

distribution is equivalent to using the SIS where resampling is performed at each iter-

ation.

2. AMPF- The optimal choice of a proposal distribution is the posterior distribution

p̂(xk|z1:k), however it is often hard to obtain samples from the posterior. Using the

AMPF [2] it is possible to obtain samples from a proposal distribution that is close to

the posterior distribution. The posterior distribution can equivalently be written as

p̂(xk|z1:k) ∝ p(zk|xk)
N∑

i=1

w
(i)
k−1p(xk|x(i)

k−1)

=
N∑

i=1

w
(i)
k−1p(zk|x(i)

k−1)p(xk|x(i)
k−1, zk) =

N∑
i=1

p(i|z1:k)p(xk|x(i)
k−1, zk)(2.53)

p(i|z1:k) ∝ w
(i)
k−1p(zk|x(i)

k−1) = w
(i)
k−1

∫
p(zk|xk)p(xk|x(i)

k−1)dxk (2.54)
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Using (2.53) we can sample from the proposal distribution p̂(xk|z1:k) by first sampling

i, which is known as the auxiliary variable from p̂(i|z1:k), and then sampling xk from

p(xk|x(i)
k−1, zk). Since (2.54) can not usually be evaluated analytically, it was suggested

in [2] to use the approximation p̂(i|z1:k) ∝ w
(i)
k−1p(zk|µ(i)

k ) where µ
(i)
k = E[xk|x(i)

k−1].

Furthermore since sampling from p(xk|x(i)
k−1, zk) is not always possible, we follow [2] and

sample from p(xk|x(i)
k−1) instead, where in all the cases which we consider p(xk|x(i)

k−1)

is a Gaussian distribution from which samples are easily drawn. Therefore the AMPF

proposal distribution is [2]

π(xk|z1:k) ∝
N∑

i=1

p̂(i|z1:k)p(xk|x(i)
k−1) (2.55)
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Chapter 3

Background- Convex Optimization,

Minimax Estimation, and Sensor

Networks

In this chapter we review the necessary background for our work in robust estimation. As

mentioned in the introduction, the estimation model is often subject to uncertainties which

have to be accounted for in order to achieve satisfactory performance. The uncertainty may

often be a result of unknown parameters in the estimation model, such as the covariance

matrix or the positions of the sensors. The robust estimation approach therefore involves

solving minimax optimization problems where one minimizes over the parameters of interest

while maximizing over the uncertain parameters in their region of uncertainty. Such minimax

problems are often difficult to solve unless they satisfy certain properties which we discuss

in this chapter, along with convex optimization techniques which are also very useful when

dealing with such problems.

Our work on robust estimation is primarily concerned with the linear Gaussian model

which is tightly related to estimation models such as Gaussian Markov random fields (GMRF)

and Gaussian processes (GP) which are often encountered in the context of sensor networks

applications. We review in this chapter the difference regret and ratio regret estimators

which are a recent advancement in the area of robust estimation in the linear Gaussian

model with covariance matrix uncertainties. We also give a brief introduction to sensor

network applications and explain the relevance of GMRF and GP models for such estimation

problems.
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3.1 Convex optimization

Convex optimization problems deal with minimization of a convex objective function over

a convex domain, which is defined using a set of inequalities and affine equality constraints

that define a convex set. Unlike general nonlinear problems, convex optimization problems

can be solved efficiently using interior points methods in polynomial complexity [34]. When

the objective function and inequality constraints are linear, the problem is known as linear

programming and can be solved efficiently using the simplex algorithm [43].

Two important properties of convex functions are demonstrated by the conjugate function

and the dual problem. Using the conjugate function one can describe a convex function using

all the tangent surfaces to the function rather than the traditional pointwise description.

Additionally using the conjugate function it is easy to obtain a lower bound for the function.

The dual problem on the other hand can be used to obtain a lower bound on a minimization

problem. An important property of convex minimization problems is that the lower bound is

achieved with equality provided that certain conditions known as Slater’s rules exist. Since

the dual problem may sometime be easier to solve than the original problem (also known as

the primal problem), this may prove to be significant in some problems. The solutions to the

primal and dual problems are related through the Karush Kuhn Tucker (KKT) conditions.

The KKT conditions are therefore useful for obtaining the solution to the primal problem

once the solution to the dual problem is known. Furthermore in certain cases it is possible

to obtain a solution to the problem by solving the KKT conditions directly.

Following is a short introduction to the basic concepts of convex optimization which is

based on [32].

3.1.1 Sets

Lines and segments

Let x1 6= x2 denote two points in Rn then the points y of the form

y = θx1 + (1− θ)x2, (3.1)

where θ ∈ R, forms a line passing through the points x1 and x2. When 0 ≤ θ ≤ 1 then y is

the line segment between the points x1 and x2.
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Affine sets

A set C is affine if for every two points x1, x2 ∈ C and θ ∈ R we have that θx1+(1−θ)x2 ∈ C,

i.e. C contains all the lines that pass through any two points in C. An example of an affine

set is the solution set of linear equations C =
{
x|Ax = b

}
where b ∈ Rm and A ∈ Rm×n.

3.1.2 Convex sets

A set C is convex if for every two points x1, x2 ∈ C the line segment between x1 and x2 lies

entirely in C i.e. θx1 + (1− θ)x2 ∈ C ∀0 ≤ θ ≤ 1.

Cones

A set C is called a cone if for every x ∈ C and θ ≥ 0, we have θx ∈ C. A cone C is also

convex if for every x1, x2 ∈ C and θ1, θ2 ≥ 0, we have θ1x1 + θ2x2 ∈ C. Two important

examples of convex cones are the norm cone which is the set C = {(x, t)|‖x‖ ≤ t} ⊆ Rn+1

where x ∈ Rn, t ∈ R, and the positive semidefinite cone Sn
+ = {X ∈ Sn|X � 0}, where

Sn = {X ∈ Rn×n|X = XT}, and X � 0 denote that X is positive semidefinite.

Proper cones and generalized inequalities

A proper cone K ⊆ Rn satisfies the following properties:

• It is a convex cone.

• It is closed.

• It is solid, i.e. it has nonempty interior.

• It is pointed, i.e. it contains no line. Alternatively if x ∈ K and −x ∈ K then x = 0.

Using a proper cone one can define a generalized inequality such that for every x, y ∈ K

we have that x �K y ⇔ y − x ∈ K. Both the norm and positive semidefinite cones are

proper cones and therefore can be used to define generalized inequalities.

Properties of convex sets

• The intersection of a finite of infinite number of convex sets is a convex set.

• The image f(S) = {Ax + b|x ∈ S} where S is a convex set, x ∈ Rn A ∈ Rm×n and

b ∈ Rm, is a convex set.
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3.1.3 Convex functions

A function f : Rn → Rm is convex if its domain which is denoted by domf is a convex set,

and if for every two points x, y ∈ domf and for 0 ≤ θ ≤ 1 we have

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y). (3.2)

Equivalent first and second order conditions for convex functions

In some cases it may be easier to determine whether a function is convex or not using the

following conditions:

• If the gradient ∇f exists at each point in domf and domf is open, then f is convex

if and only if domf is convex and for all x, y ∈ domf we have that

f(y) ≥ f(x) +∇f(x)T (y − x). (3.3)

• If the Hessian ∇2f exists at each point in domf and domf is open, then f is convex

if and only if domf is convex and the Hessian is positive semidefinite, i.e. for all

x ∈ domf we have that ∇2f(x) � 0 (A � 0 denotes that A is a positive semidefinite

matrix).

• Let g(x, t) = tf(x/t) where f : Rn → R and where g : Rn+1 → R and is known as the

perspective function of f , then if f is convex then g is also convex.

• A function f(x) is convex if and only if its epigraph is a convex set, where the epigraph

is defined as the set {(x, t)|x ∈ domf, f(x) ≤ t}.

Properties of convex functions

• The sublevel sets of a convex function form a convex set, i.e. let f : Rn → R then the

set Cα = {x ∈ domf |f(x) ≤ α} is a convex set for any α ∈ R.

• A nonnegative weighted sum of convex functions is a convex function, i.e. let f1(x), . . . , fn(x)

be convex functions, then f(x) = w1f1(x) + · · ·+ wnfn(x) is a convex function for all

w1, . . . , wn ≥ 0, and domf =
⋂n

i=1 domfi.

• The pointwise maximum and supremum is a convex function, i.e. let f1(x), f2(x) be

two convex functions then f(x) = max (f1(x), f2(x)) is also a convex function.
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The conjugate function

A convex function f(x) can be represented equivalently using the conjugate function f ∗(y)

where

f ∗(y) = max
x

(yT x− f(x)), (3.4)

and f(x) can be obtained from f ∗(y) using

f(x) = max
y

(xT y − f ∗(y)). (3.5)

The conjugate function replaces the locus of points representation given by f(x) with an

envelope of tangents representation given by f ∗(y) [25]. This can be seen from the example

in Figure 3.1 where the dotted vertical segments represent values of yx− f(x) and it can be

seen that the line yx has to be shifted by the amount which is the maximum of yx − f(x)

in order to obtain a line which is tangent to f(x) with the slope y. The intersection of the

tangent line with slope y with the vertical axis is therefore at −f ∗(y).

Similarly for concave functions we have

f ∗(y) = min
x

(yT x− f(x)), (3.6)

and f(x) can be obtained from f ∗(y) using

f(x) = min
y

(xT y − f ∗(y)). (3.7)

3.1.4 Convex optimization problems

The standard form of an optimization problem is composed of a scalar objective function

f0(x) that is to be minimized, and a set of scalar inequalities fi(x) ≤ 0 i = 1, . . . ,m and

equalities hi(x) = 0 i = 1, . . . , p that define the domain for the problem. The common

notation for such a problem is

min
x

f0(x) (3.8)

subject to

fi(x) ≤ 0, i = 1, . . . ,m
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Figure 3.1: An example of the interpretation of the conjugate function

hi(x) = 0, i = 1, . . . , p (3.9)

and the domain is the intersection of all the domains of all the functions i.e.

( m⋂
i=0

domfi

)⋂( p⋂
i=1

domhi

)
(3.10)

If either the objective function or the domain are not convex then the problem is known

as a nonlinear program and may be very difficult to solve. If the functions fi(x) ≤ 0

i = 0, . . . ,m are convex and the functions hi(x) = 0 i = 1, . . . , p are affine, i.e. of the form

hi(x) = aT
i x−bi, then since the domain of the sublevel sets of of convex functions are convex

and the intersection of convex sets is also convex, the domain of the problem is convex and the

problem is a convex optimization problem. Common examples of such problems are linear

programming, second order cone programming, and quadratic programming. One extension

to the standard form given by the constraints in (3.9) is when the constraints functions fi(x)
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i = 1, . . . ,m are vector valued and the inequalities are interpreted as generalized inequalities

with respect to proper cones. Since proper cones are convex the domain of the problem is

convex and the problem is a convex optimization problem. An examples of such a convex

optimization problem is semidefinite programming where the semidefinite cone is considered.

Second order cone programming can also be interpreted in this form where the norm cone

is considered.

Linear programming

When all the functions in (3.8) and (3.9) are linear the problem is known as linear program-

ming and can be solved efficiently using the simplex algorithm.

Second order cone programming

A second order cone optimization program is of the form

min
x

fT x (3.11)

subject to

‖Aix− bi‖2 ≤ cT
i x + di, i = 1, . . . ,m

Fx = g
(3.12)

where x, f ∈ Rn, Ai ∈ Rni×n, F ∈ Rp×n, g ∈ Rp, bi ∈ Rni , and di ∈ R.

Semidefinite programming

A semidefinite programming optimization problem is of the form

min
x

cT x (3.13)

subject to

x1F 1 + . . . + xnF n + G � 0

Ax = b

where G, F 1, . . . ,F n are symmetric matrices, x1, . . . , xn denote the elements of x ∈ Rn,

c ∈ Rn, A ∈ Rp×n, b ∈ Rp, and the generalized inequality is with respect to the positive

semidefinite cone. The following lemma is often used in order to transform optimization

problems into the semidefinite programming form:
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Lemma 1. (Schur’s Complement [26]): Let

M =

[
A BT

B C

]

be a Hermitian matrix with C � 0. Then M � 0 if and only if A−BT C−1B � 0.

3.1.5 Duality

An important property of convex optimization problems is that they can be solved equiva-

lently using the dual problem, provided that certain conditions known as Slater’s conditions

are satisfied. In order to obtain the dual problem for (3.8),(3.9) we first have to define the

Lagrangian and the dual function. The Lagrangian is defined by

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x) (3.14)

where the vectors λ and ν are the lagrange multipliers associated with the inequality and

equality constraints. The dual function is obtained by minimizing the Lagrangian over the

domain given in (3.10) denoted by , D i.e.

g(λ, ν) = inf
x∈D

L(x, λ, ν). (3.15)

For any λ ≥ 0 and for any ν we have g(λ, ν) ≤ p∗ where p∗ denotes the optimal value for

the primal problem given by (3.8),(3.9). In order to minimize the gap between the optimal

value for the primal problem and the dual function we have to maximize the dual function

over λ ≥ 0 and over any ν. The dual problem therefore takes the form

max
λ≥0, ν

g(λ, ν) (3.16)

Let d∗ denote the optimal value for the dual problem (3.16) then if d∗ = p∗ we say that

strong duality holds. Strong duality does not hold in general, however a sufficient condition

for strong duality is given by Slater’s condition.
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Slater’s constraint

If the primal problem is convex i.e. f0, . . . , fm are convex, and the problem is strictly feasible,

i.e. there exists x ∈ D such that

fi(x) < 0, i = 1, . . . ,m Ax = b (3.17)

then strong duality holds.

Nevertheless Slater’s condition is a sufficient condition for strong duality however it is not

necessary. For example, strong duality holds for a quadratic objective with a single quadratic

inequality (without any other linear inequalities) even if the objective is not convex.

3.2 Minimax theory

Minimax theory deals with optimization problems of the form

min
v∈D

max
u∈C

K(u, v) (3.18)

where C and D denote two non-empty sets and K : C ×D −→ [−∞,∞]. The solution

of such optimization problems is not straightforward in the general case, however if the

objective function K satisfies certain conditions, then there exist minimax theorems that

can facilitate the solution. In particular if the objective function has a saddle point then it

must be a solution of the minimax problem (although it may not be a unique solution).

Definition 1. Let C and D denote two non-empty sets and let K : C × D −→ [−∞,∞],

then a point (ũ, ṽ) ∈ C ×D is called a saddle point of K with respect to maximizing over C

and minimizing over D if

K(u, ṽ) ≤ K(ũ, ṽ) ≤ K(ũ, v), ∀u ∈ C, ∀v ∈ D

The following Lemma [25] states necessary and sufficient conditions for a point to be a

saddle point:

Lemma 2. Let K be any function from a non-empty product set C × D to [−∞,∞]. A

point (ũ, ṽ) is a saddle point of K (with respect to maximizing over C and minimizing over
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D) if and only if the maximum in the expression

max
u∈C

min
v∈D

K(u, v) (3.19)

is attained at ũ, the minimum in the expression

min
v∈D

max
u∈C

K(u, v) (3.20)

is attained at ṽ, and these two extrema are equal.

An important Lemma that states sufficient conditions for a function to have a saddle

point is given next

Lemma 3. [25] Let C and D be two non-empty closed convex sets in Rm and Rn, respectively,

and let K be a continuous finite concave-convex function on C ×D (i.e. concave in C and

convex in D). If either C or D is bounded, one has

min
v∈D

max
u∈C

K(u, v) = max
u∈C

min
v∈D

K(u, v) (3.21)

Since (3.21) satisfies the necessary conditions required by Lemma 2 for a saddle point,

then Lemma 3 gives sufficient conditions for the solution to be a saddle point. Most impor-

tantly if the conditions in Lemma 3 are satisfied then the order of the maximization and

minimization can be interchanged, which can simplify the solution of the minimax problem

in many cases.

3.3 Estimation with covariance matrix uncertainties

The classic solution to estimating a Gaussian random vector x that is observed through

a linear transformation and corrupted by Gaussian noise is obtained using the minimum

squared error (MMSE) estimator which assumes full knowledge of the covariance matrix of

the random vector x and the covariance matrix of the observation noise. Specifically let

y = Hx + w, (3.22)

where y ∈ Rn is the observation, H ∈ Rn×m, and x ∈ Rm, w ∈ Rn are independent zero

mean Gaussian random vectors with covariance matrices Cx and Cw respectively, then given
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an observation vector y the MMSE estimate of x takes the form [28]

x̂ = CxHT (HCxHT + Cw)−1y. (3.23)

In many applications it is reasonable to expect that the estimate of the covariance matrix

of the observation noise is accurate. However the estimate of the covariance matrix of x

may often be highly inaccurate and lead to severe performance degradation when using the

MMSE estimator. Therefore in practice it is necessary to require the filter to be robust with

respect to such uncertainty. The common approach to achieve such robustness is through the

use of a minimax estimator which minimizes the worst case performance over some criterion

in the region of uncertainty [30,31].

One such performance measure is the mean squared error (MSE), where the estimator is

chosen such that the worst case MSE in the region of uncertainty of the covariance matrix

of x is minimized. However as was noted in [28] this choice may be too pessimistic and

therefore the performance of an estimator designed this way may be unsatisfactory. Instead

it is proposed in [28] to minimize the worst case difference regret which is defined as the

difference between the MSE when using a linear estimator of the form x̂ = Gy and the

MSE when using the MMSE estimator matched to a covariance matrix Cx, where G is a

matrix with the appropriate dimensions. The motivation for this choice is that the worst case

difference regret criterion is less pessimistic than the worst case MSE criterion. Similarly the

ratio regret estimator proposed in [29], minimized the worst case ratio regret which is defined

as the ratio between the MSE when using a linear estimator of the form x̂ = Gy and the

MSE when using the MMSE estimator matched to a covariance matrix Cx. The motivation

for the ratio regret estimator is similar to the difference regret where the MSE is measured in

decibels. The difference and ratio regret estimators presented in [28,29] assume that the the

eigenvector matrix of Cx is known and is identical to the eigenvector matrix of HT C−1
w H ,

which is also called the joint diagonalizable matrices assumption. Furthermore the region of

uncertainty is expressed using upper and lower bounds on each of the eigenvalues of Cx.

3.3.1 Minimax regret estimators

The aim of the minimax regret estimators is to achieve robustness to the uncertainty in

the covariance matrix by finding a linear estimator of the form x̂ = Gy that minimizes

the worst performance of the regret in the region of uncertainty of the covariance matrix

Cx. Specifically let <(Cx, G) denote the regret, and let Ω ⊂ S+, where S+ denotes the
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set of positive semidefinite matrices, denote the region of uncertainty of Cx. The minimax

estimator is then obtained by solving

G = arg min
G

max
Cx∈Ω

<(Cx, G). (3.24)

The difference and ratio regret criteria are defined as the difference and the ratio between

the MSE when using an estimator of the form x̂ = Gy and the MSE when using the MMSE

estimator. The MSE when estimating x using a linear estimator of the form x̂ = Gy is

given by [28]

E(‖x̂− x‖2) = Tr(GCwGT ) + Tr(Cx(I −GH)T (I −GH)) (3.25)

where Tr(A) denotes the trace of the square matrix A, and I denotes the identity matrix

with the appropriate dimensions. The MSE when using the MMSE estimator takes the

form [28]

MSE0 = Tr((HT C−1
w H + C−1

x )−1). (3.26)

Both the difference and ratio estimators presented in [28, 29] assume that the region of

uncertainty Ω is expressed as uncertainties in the eigenvalues of the covariance matrix Cx

assuming that the eigenvectors are known. Specifically, let V denote the eigenvectors matrix

of Cx, and let ui and `i denote upper and lower bounds on the eigenvalues δi i = 1, . . . ,m,

then Ω = {V ∆V T |∆ = diag(δ1, . . . , δm), `i ≤ δi ≤ ui}.

Difference regret estimator

The difference regret is defined as the difference between (3.25) and (3.26)

<(Cx, G) = E(‖x̂− x‖2)−MSE0

= Tr(Cx(I −GH)T (I −GH))

+ Tr(GCwGT )− Tr((HT C−1
w H + C−1

x )−1).

(3.27)

Assuming that HT C−1
w H = V ΛV T where Λ is a diagonal matrix with the diagonal ele-

ments λi i = 1, . . . ,m, it is shown in [28] that

G = V DΛ−1V T HT C−1
w , (3.28)
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where D is an m×m diagonal matrix with diagonal elements

di = 1− 1√
(1 + λiζi)2 − λ2

i ε
2
i

, (3.29)

and where ζi = (ui + `i)/2 and εi = (ui − `i)/2.

The difference regret estimator can also be interpreted as the MMSE estimator (3.23)

with an equivalent covariance matrix Cx = V XV T where X is a diagonal matrix with the

diagonal elements

xi =
1

λi

(√
(1 + λiζi)2 − λ2

i ε
2
i − 1

)
. (3.30)

Ratio regret estimator

The ratio regret is defined as the ratio between (3.25) and (3.26)

<(Cx, G) =
Tr(GCwGT ) + Tr(Cx(I −GH)T (I −GH))

Tr((HT C−1
w H + C−1

x )−1)
(3.31)

Using (3.31) in (3.24) it is shown in [29] that the optimal G can be obtained by solving,

t(γ) = min
G

max
Cx∈Ω

<γ(Cx, G) (3.32)

where

<γ(Cx, G) = Tr(GCwGT ) + Tr(Cx(I −GH)T (I −GH))− γTr((HT C−1
w H + C−1

x )−1)

(3.33)

where it is shown that t(γ) is a continuous and strictly decreasing function of γ ≥ 0, and γ

should be chosen such that t(γ) = 0. This can be achieved by perfoming a line search over

γ.

Assuming that HT C−1
w H = V ΛV T where Λ is a diagonal matrix with the diagonal

elements λi i = 1, . . . ,m, it is shown in [28] that the optimal solution takes the form

G = V DΛ−1V T HT C−1
w (3.34)
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where D is an m×m diagonal matrix with diagonal elements di that are given by

di =


1−

√
γ√

(1+λiζi)2−λ2
i ε2i

, 1 ≤ γ ≤ γ0
i

λi(ζi−εi)
1+λi(ζi−εi)

, γ ≥ γ0
i

(3.35)

where

γ0
i =

1 + λi(ζi + εi)

1 + λi(ζi − εi)
, (3.36)

and where γ is chosen such that
∑n

i=1 ti(γ) = 0, where ti(γ) is given by.

ti(γ) =


1
λi
− 2

√
γ

λi

√
(1+λiζi)2−λ2

i ε2i
+

γ(λ2
i (ε2i−ζ2

i )+1)

λi((1+λiζi)2−λ2
i ε2i )

, 1 ≤ γ ≤ γ0
i

(γ−1)(εi−ζi)
1+λi(ζi−εi)

, γ ≥ γ0
i

(3.37)

3.4 Sensor networks

A sensor network is comprised of many autonomous sensors that are spread in an environ-

ment, collecting data and communicating with each other [41]. Each sensor node also has

some computational resources and can process the data that it acquires and the transmission

that it receives from other sensors independently. Since the sensors are usually battery pow-

ered, a major concern in such applications is reducing the energy consumption, especially

the energy spent on communication between the sensors, which is significantly larger than

any other cause for energy consumption. The straightforward approach to estimation in

sensor networks is to transmit all the data collected by the sensors to a centralized location

and perform the estimation there, however this approach is very inefficient energy wise since

an enormous amount of data has to be transmitted. Instead the more energy efficient ap-

proach is to transmit messages between the sensor nodes and have the sensors perform the

estimation collectively.

Estimation in sensor networks is concerned with estimating the distributions, or statistical

quantities such as the mean or variance of random variables that are associated with the

sensor network’s nodes, and may be correlated or statistically dependent. Such a structure

can be efficiently represented using a graphical model (GM). A GM is comprised of a set

of vertices representing the random variables, and a set of edges representing a statistical

dependency between the two random variables that it connects. When the GM contains

no cycles then the estimation problem can be solved efficiently using the belief propagation

(BP) algorithm (also known as the sum product algorithm) [42]. The BP algorithm involves
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transmitting messages between adjacent nodes until convergence is obtained. When the GM

does contain cycles then it is possible to obtain exact inference by transforming the graph

to the junction tree form [36], however the computational cost is exponential in the size of

the added junction nodes, therefore in many practical applications this cost is unacceptable

[35, 37]. There also exist approximate inference algorithms such as the loopy BP where BP

is used similarly to the cycle free case, however the algorithm is not guaranteed to converge

and if it does converge then the inferences should be viewed only as approximations to their

true values [35]. For the Gaussian GM (also known as Gaussian Markov random fields) case

there also exist iterative algorithms that perform a distributed computation of the MMSE

estimation [37, 38]. Such methods have been shown to converge faster than loopy BP, and

there exist conditions under which convergence is guaranteed.

Another statistical model which can used to capture the correlation structure of the nodes

in a sensor network is the Gaussian Process (GP) [44]. A GP extends the discrete set of sites

that form a Gaussian random vector into a continuous domain, where every set of points

in the domain forms a Gaussian random vector. This can be useful in cases where there is

uncertainty in the position of the sensors or in order to determine the optimal placement of

the sensors [45].

3.4.1 Gaussian Markov random fields

A Gaussian Markov random field (GMRF) assumes that the random variables in the GM are

jointly Gaussian with a covariance matrix that is parameterized by a form that is determined

by the edges of the graph.

Let g = (ν, ε) denote the set of vertices ν and the set of edges ε in the graph g. The set

of random variables is X = {xs|s ∈ ν}. The Markov property states that given the set of

neighboring nodes to s (the nodes that share an edge with s and are denoted by Γ(s)), the

distribution of the random variable xs is independent of all the other random variables in

the graph, i.e.

p(xs|xν\s) = p(xs|xΓ(s)). (3.38)

The Hammersley-Clifford theorem stipulates that for any Markov random field (MRF)

(where GMRF is a special case of MRF) the distribution of the random variable xs is a

Gibbs distribution

p(xs|xν\s) =
1

Z
e−
∑

c∈Cs
Vc(X) (3.39)

where Cs denotes the set of all cliques that contain node s, where a clique is defined as any
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group of nodes that are all connected to s and can contain between one node to the number

of nodes connected to s, Vc(X) is known as the potential function for clique c, and Z is a

normalization constant.

The choice of the clique types and the potential functions clearly have an important effect

on the MRF distribution. For a GMRF only single and pairwise cliques containing either

one or two nodes are considered. The potential function for a single node takes the form

V (1)
s (xs) = −x2

sPs, and for the two node case the potential function connecting notes s and

t takes the form

V
(2)
s,t (xs, xt) = −[xs xt]

[
Ps(t) Ps,t

Pt,s Pt(s)

][
xs

xt

]
(3.40)

where Ps,t is the (s, t) element of the inverse covariance matrix P , and where Ps(t) are

chosen such that Ps,s = Ps +
∑

t∈Γ(s) Ps(t). The pairwise potential functions V
(2)
s,t (xs, xt) do

not necessarily have to be valid PDFs, i.e. the inverse covariance matrix of the pairwise

potential functions [
Ps(t) Ps,t

Pt,s Pt(s)

]
(3.41)

do not have to be positive semidefinite [51], however the inverse covariance matrix {Ps,t}s,t∈ν

must be positive semidefinite. The distribution of the random vector X then takes the form

p(X) =
1

Z̄
e
−
∑

(s,t)∈ε
V

(2)
s,t (xs,xt)−

∑
s∈ν

V
(1)
s (xs) (3.42)

where Z̄ is a normalization constant.

3.4.2 Gaussian processes

A GP is defined as follows:

Definition 2. A Gaussian Process is a collection of variables, any finite number of which

have a joint Gaussian distribution.

Clearly any the elements of a Gaussian random vector would be classified as a GP,

however we can obtain a much richer statistical model using this definition. To show this we

first consider a distribution that is defined over a function. Let f(x) denote a real process,
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then the mean function m(x) and covariance function k(x, x′) take the form

m(x) = E[f(x)] (3.43)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (3.44)

where x, x′ ∈ X where X is the domain of f(x), e.g. RD. For every x1, . . . ,xn ∈ X we have

that the covariance matrix of the random variables f(x1), . . . , f(xn) is positive semidefinite.

This is clear because for every z1, . . . , zn ∈ R we have [47]

n∑
i,j=1

zizkk(xi, xj) = E
[∣∣∣ n∑

i=1

zi(f(xi)−m(xi))
∣∣∣2] ≥ 0 (3.45)

A simple example of a Gaussian process can be obtained using the process f(x) = φ(x)T w,

where w ∼ N (0,Σp), and where φ(x) : RD → RN is a projection into some high dimension

space. It is clear that this choice of f(x) satisfies definition 2 such that for any x1, . . . ,xn ∈ X
we have that f(x1), . . . , f(xn) are mutually Gaussian. The mean and covariance functions

for such a GP are:

m(x) = φ(x)T E[w] = 0 (3.46)

k(x, x′) = φ(x)T E[wwT ]φ(x′) = φ(x)TΣpφ(x′) (3.47)

It should be noted that m(x) and k(x, x′) are scalars regardless of N the dimensionality of

the projection φ(x). Therefore we may even have N →∞ since we only need to specify the

kernel function k(x, x′) in order to completely specify the GP. The only condition that the

kernel function must satisfy is that it is positive semidefinite, i.e. it satisfies that for any

x1, . . . ,xn ∈ X and any z1, . . . , zn ∈ R we have

n∑
i,j=1

zizkk(xi, xj) ≥ 0 (3.48)

A major distinction between different kernel functions is whether the kernel function is

stationary or not, i.e. whether it can be expressed as a function of r = ‖x − x′‖, where

r = ‖x − x′‖, and x̃ = [1xT ]T . Table 3.1 shows different stationary and non-stationary

choices for covariance functions. A method to estimate a nonstationary kernel function

using a set of estimates of the covariance matrix at several known locations was presented

in [48].
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Table 3.1: Different covariance functions

covariance function expression stationary

constant σ2
0

√

linear
∑D

d=1 σ2
dxd · x′d

polynomial (x · x′ + σ2
0)

p

squared exponential exp
(
− r2

2`2

) √

exponential exp
(
− r

`

) √

γ-exponential exp
(
− r

`

)γ √

rational quadratic (1 + r2

2α`2
)−α

√

neural network arcsin
(

2x̃T Σx̃′√
(1+2x̃T Σx̃)(1+2x̃′T Σx̃′)

)
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Chapter 4

Tighter IFGT Performance Bounds

and Nonlinear Filtering using the

IFGT

In this chapter we first derive new performance bounds for the IFGT which are significantly

tighter than the previous bounds and unlike the old bounds agree with our expectation that

the error decreases as the truncation order increases. The new bounds also leads to a new

definition of the IFGT parameters. Subsequently we develop a new proposal distribution

which uses Monte Carlo integration and importance sampling to approximate the AMPF

integral in (2.54) and use it to perform nonlinear filtering, where the IFGT is used to reduce

the computational complexity of the filtering algorithm. The IFGT parameters in this case

have to be chosen experimentally such that a compromise between accuracy and computation

time is obtained, however we demonstrate that the new bounds give new insight into the

effect that the IFGT parameters have on the error, thus facilitating their experimental choice.

4.1 New error bounds for the IFGT

In this section we derive new upper error bounds for the IFGT. The first bound assumes

that the source points and their weights are given, whereas the second bound applies to the

case where only the radius of a ball containing the source points is known.

Theorem 1. The error ET due to truncating the series (2.10) after pth order satisfies the
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bound

|ET | ≤ κ max
‖τ‖>0

e−‖τ‖
2/2Θ1(‖τ‖) (4.1)

where

Θ1(‖τ‖) =
N∑

j=1

|qj|e−‖ξj‖2/2+‖ξj‖‖τ‖ −
p−1∑
n=0

dn‖τ‖n, (4.2)

dn =
N∑

j=1

1

n!
|qj|e−‖ξj‖2/2‖ξj‖n (4.3)

and where ξj = ∆sj/σ, τ = ∆t/σ. Furthermore the global maximum in (4.1) can be found

by performing a line search on ‖τ‖, and the the upper bound decreases as the truncation

order p increases.

Proof. The truncation error in (2.10) can be bounded by,

|ET | ≤ κ
N∑

j=1

|qj||e−‖ξj‖2/2e−‖τ‖
2/2

∞∑
n=p

1

n!
(ξj · τ )n|

≤ κe−‖τ‖
2/2

N∑
j=1

|qj|e−‖ξj‖2/2
∞∑

n=p

1

n!
(‖ξj‖‖τ‖)n (4.4)

= κe−‖τ‖
2/2

N∑
j=1

|qj|e−‖ξj‖2/2(e‖ξj‖‖τ‖ −
p−1∑
n=0

1

n!
(‖ξj‖‖τ‖)n) (4.5)

≤ κ max
‖τ‖>0

e−‖τ‖
2/2Θ1(‖τ‖) (4.6)

where (4.4) follows from the Cauchy-Schwartz inequality, (4.5) follows since the infinite sum

in (4.4) is the tail of the Taylor series expansion of the exponent function, and (4.6) is

obtained by maximizing over ‖τ‖. In order to show that the maximization can be obtained

using a line search we show that there exists a maximum and it is either a global maximum

or one of several local maxima that have the same objective value.

Let Γ1(‖τ‖) = e−‖τ‖
2/2Θ1(‖τ‖). We note that Γ1(0) = 0, and since

0 ≤ Γ1(‖τ‖) ≤
N∑

j=1

|qj|e−‖τ‖
2/2e‖ξj‖‖τ‖ =

N∑
j=1

|qj|e−‖τ‖(‖τ‖/2−‖ξj‖) −→ 0 (4.7)

as ‖τ‖ → ∞ for any bounded {‖ξj‖}N
j=1, we have Γ1(∞) = 0. Therefore since Γ1(‖τ‖) is

nonnegative there must be a maximum. Next we show that we can find the maximum in

(4.6) using a line search. Let a be such that ∂
∂‖τ‖Γ1(‖τ‖)

∣∣∣
‖τ‖=a

= 0 and assume that there
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exists another point b such that ∂
∂‖τ‖Γ1(‖τ‖)

∣∣∣
‖τ‖=b

= 0. Using Γ1(‖τ‖) = e−‖τ‖
2/2Θ1(‖τ‖)

we obtain that

∂

∂‖τ‖
Γ1(‖τ‖) = (−‖τ‖Θ1(‖τ‖) +

∂

∂‖τ‖
Θ1(‖τ‖))e−‖τ‖

2/2 = 0, for ‖τ‖ = a or ‖τ‖ = b,

(4.8)

or equivalently
∂

∂‖τ‖Θ1(‖τ‖)
Θ1(‖τ‖)

= ‖τ‖ for ‖τ‖ = a or ‖τ‖ = b. (4.9)

Equation (4.9) is a differential equation and is therefore equivalent to

Θ1(‖τ‖) = Ce‖τ‖
2/2, for ‖τ‖ = a or ‖τ‖ = b, (4.10)

where C is some constant. Using ‖τ‖ = a and ‖τ‖ = b in (4.10) we have that C = Γ1(a) =

Γ1(b). Therefore if a = b then we have a global maximum, and if a 6= b then a and b are

local maxima that have the same objective value. This result can be easily extended to any

number of maxima. Additionally since the infinite sum in (4.4) decreases as p increases, so

does Θ1(‖τ‖). Therefore the upper bound decreases as the truncation order increases.

In order to derive the second bound we first have to prove the following two propositions.

Proposition 1. Let,

Γ2(‖τ‖, r0) = e−‖τ‖
2/2Θ2(‖τ‖, r0) (4.11)

where

Θ2(‖τ‖, r0) = e−r2
0/2(er0·‖τ‖ −

p−1∑
n=0

1

n!
(r0 · ‖τ‖)n) (4.12)

then for a given r0 > 0 the solution to

a = arg max
‖τ‖>0

Γ2(‖τ‖, r0) (4.13)

satisfies a > r0.

Proof. Taking the derivative of Γ2(‖τ‖, r0) with respect to ‖τ‖ we obtain

∂

∂‖τ‖
Γ2(‖τ‖, r0) =

(
(r0 − ‖τ‖)

∞∑
n=p

1

n!
(r0‖τ‖)n +

rp
0‖τ‖p−1

(p− 1)!

)
e−‖τ‖

2/2−r2
0/2,

and therefore we have that ∂
∂‖τ‖Γ2(‖τ‖, r0) = 0 only if ‖τ‖ > r0 or equivalently a > r0.
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Proposition 2. If ‖τ‖ > r0 > 0, it follows that

∂

∂r0

Θ2(‖τ‖, r0) > 0 (4.14)

Proof. Taking the derivative of Θ2(‖τ‖, r0) with respect to r0 we obtain

∂

∂r0

Θ2(‖τ‖, r0) =

(
(‖τ‖ − r0)

∞∑
n=p

1

n!
(r0‖τ‖)n +

‖τ‖prp−1
0

(p− 1)!

)
e−r2

0/2

which is strictly positive for every ‖τ‖ > r0 > 0.

Theorem 2. Let NB sources with weights {qj}NB
j=1 lie in a ball with radius r0σ, then the error

ET due to truncating the series (2.10) after pth order satisfies the bound

|ET | ≤ QBεIFGT3
p (r0) (4.15)

where

εIFGT3
p (r0) = κ max

‖τ‖>0
e−‖τ‖

2/2Θ2(‖τ‖, r0) (4.16)

Furthermore the global maximum in (4.16) can be found by performing a line search on ‖τ‖,
and the upper bound decreases as the truncation order p increases.

Proof. Taking N = 1, ‖ξ1‖ = r0 in Theorem 3 it can be seen that (4.15) is satisfied. All that

is left to be shown is that εIFGT3
p (r0) in (4.16) is a monotonically increasing function of r0.

Let a be defined as in (4.13) then using proposition 1 we have a > r0 > 0. Using proposition

2, and the definition of the derivative we have

lim
δ→0

1

δ
(Θ2(a, r0 + δ)−Θ2(a, r0)) > 0 (4.17)

Multiplying both sides of (4.17) by e−a2/2 we get

lim
δ→0

1

δ
(Γ2(a, r0 + δ)− Γ2(a, r0)) > 0 (4.18)

By the definition of a and εIFGT3
p (r0) in (4.13) and (4.16) respectively, we have

εIFGT3
p (r0) = κΓ2(a, r0) (4.19)
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and,

εIFGT3
p (r0 + δ) ≥ κΓ2(a, r0 + δ) (4.20)

Using (4.19) and (4.20) in (4.18) we obtain

lim
δ→0

1

δ
(εIFGT3

p (r0 + δ)− εIFGT3
p (r0)) > 0 (4.21)

which is equivalent to ∇r0ε
IFGT3
p (r0) > 0. Therefore εIFGT3

p (r0) is an increasing function of

r0.

4.2 Analysis of the new error bounds and choosing the

IFGT parameters using the new bounds

In this section we first analyse the new error bounds and demonstrate that the new error

bounds (a) they are significantly tighter than the old bound and (b) they are consistent with

our expectation that the error decreases as the truncation order increases. Since in practice

the truncation order and the number of clusters that are used to partition the source points

have to be chosen experimentally such that a compromise between the speed and accuracy

of the filtering algorithm is obtained, these new bounds provide important insight into this

choice. We then show how the IFGT parameters rs, rt, and p can be chosen using the new

bounds such that the KDE can be approximated to any order of accuracy.

4.2.1 Analysis of the error bounds

Analysis of the error bound in Theorem 1

We evaluate the new upper error bound in Theorem 3 and the old upper error bound (2.17),

assuming that the source points are drawn from a multivariate Gaussian PDF, and the

weights are obtained by evaluating the multivariate Gaussian PDF at the source points. This

is an appropriate model for the filtering case where the source points and weights represent

a PDF that could be modeled as a Gaussian mixture where each cluster of source points

originates from a different mixture. We compare the upper error bounds to the maximum

error obtained in the synthetically generated target points set when using the IFGT, where

a single cluster is used for all the source points. We generated 5000 source points from a

4D multivariate Gaussian with covariance matrix 0.4I, and set the weights of all the source
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Figure 4.1: Empirical upper error bound and and upper error bounds (4.1) and (2.17) vs.
truncation order for source points generated from a zero mean Gaussian with covariance
matrix 0.4I

points to the same value. For simplicity we used σ = 1 in (2.2), and we assume κ = 1.

We generated 5000 target points from a uniform distribution over a hyper-cube with edges

bounded by [−5, 5] in each axis. Figure 4.1 compares the upper error bounds (4.1) and (2.17),

and the empirical maximum error obtained for the generated data. It can be seen that the

new bound is significantly tighter compared to the old bound. Since as discussed above

the experimental scenario that we used to evaluate the bound given in Theorem 3 is very

similar to what is expected in a nonlinear filtering problem, Figure 1 gives strong evidence

that using small truncation orders should be sufficient to obtain satisfactory performance in

nonlinear filtering problems.

Analysis of the error bound in Theorem 2

Figure 4.2 plots εIFGT3
p (r0) in (4.16), and εIFGT2

p (r0) in (2.15) for 0 ≤ r0 ≤ 3, and for

truncation orders p = 5, 8. It can be seen that the new bound εIFGT3
p (r0) is significantly

tighter than the existing bound εIFGT2
p (r0). Furthermore it can be seen that the old bound is

not consistent with our expectation that the error decreases as the truncation order increase.

Theorem 2 on the other hand stipulates that the error decreases as the truncation order

increases. In the next subsection we describe our implementation of the IFGT which clusters

the source points into balls with radius σr0. Therefore based on Theorem 2 we can expect

the error performance of the filtering algorithm to improve as the truncation order increases
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Figure 4.2: εp for the IFGT2 and IFGT3 vs. r0, for κ = 1, for truncation orders 5, and 8.

for any value of r0.

4.2.2 Choosing the IFGT parameters using the new bounds

Choosing parameters that satisfy a specified error bound

Similarly to (2.14) we take rt = rs + nσ, thus the error due to ignoring all the other clusters

is bounded by Qe−n2/2. Taking rs = r0σ, the error due to truncating the expansion after the

pth order is bounded by QεIFGT3
p (r0). Therefore by fixing r0 and p according to plots such

as Figure 2 we can bound the maximum truncation error. Similarly we can choose n such

that Qe−n2/2 is less than QεIFGT3
p (r0). Therefore we define the new IFGT parameters to be

r0, n, and p. The specific details of the IFGT using this choice of parameters is summarized

in Algorithm 3. We may obtain an even tighter bound than QεIFGT3
p (r0) for the truncation

error by applying the bound given in Theorem 1 for each cluster and summing the error

bounds over all the clusters.

Choosing the parameters experimentally

As is evident from the previous discussion about choosing the parameters that satisfy a

specified error bound, the parameters that determine the performance of the IFGT are n,

r0, and p. Since n is independent of r0 and p it can be specified separately, whereas it can be

seen from Figure 2 that r0 and p are dependent. Furthermore the larger p is, and the smaller
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r0 is the more accurate the IFGT becomes. The process of choosing r0 and p experimentally

therefore requires incrementing p and decreasing r0 until a satisfactory performance of the

filtering algorithm is obtained. It should be noted that as p increases and r0 decreases the

computational constant of the IFGT also increases therefore the filtering algorithm becomes

slower.

IFGT Algorithm:

• Cluster all the source points into balls with radius r0σ.

• Compute the IFGT coefficients for each cluster using (2.11).

• For each target point, sum over all evaluations of (2.10) at all the clusters with the

centers that lie within (n + r0)σ from the target point.

4.3 Nonlinear filtering using a new proposal distribu-

tion and the IFGT

4.3.1 The new filtering algorithm

AMPF-IS

We propose a new proposal distribution which we call AMPF-IS, where (2.54) is approxi-

mated using IS. For each i we draw m samples
{
x̃

(n)
k

}m

n=1
from p(xk|x(i)

k−1) and approximate

(2.54) using

p̂(i|z1:k) ∝ w
(i)
k−1

m∑
n=1

p(zk|x̃(n)
k ) (4.22)

Sampling from the proposal π(xk|z1:k) proceeds similarly to the AMPF case using (2.55),

using the approximation in (4.22) and using Algorithm 1.

Reducing the computational complexity of the AMPF using the IFGT

The AMPF and AMPF-IS improve on the SIS proposal distribution since the information

provided by the latest measurement zk is used to perform sampling in areas of high proba-

bility of the posterior p̂(xk|z1:k), however there is an added computational cost incurred by

having to evaluate (2.47) and (2.55), both of which have O(N2) computational complexity.

Next we show that this computational complexity can be reduced to O(N) using the IFGT.
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In this chapter we consider the case where the state noise in (2.18) is a zero mean Gaussian

with a covariance matrix Σ. Factorizing Σ into Σ = V TΛV where V is an orthonormal

matrix and where Λ is a diagonal matrix with nonnegative elements, we can rewrite (2.47)

as

p̂(xk|z1:k−1) = κ
N∑

i=1

w
(i)
k−1e

−‖νk−s
(i)
k−1

‖2/2 (4.23)

where νk = Λ
1
2 V xk, and s

(i)
k = Λ

1
2 V f(x

(i)
k ). Therefore (4.23) is equivalent to (2.2) where

σ = 1, qj = w
(i)
k−1, and νk and s

(i)
k are the target and source points respectively. Thus (4.23)

can be approximated using the IFGT. Similarly we can approximate (2.55) using the IFGT.

4.3.2 Experimental results

In the following we show experimental results for the new framework to nonlinear filtering.

We also compare our results to using the SIS filter discussed previously.

Example 1

For our simulations we use the a four dimensional state space model which is an extension

of the one dimensional state space model used in [8]

x
(d)
t+1 =

x
(u1(d))
t

2
+ 25

x
(u2(d))
t

1 + (x
(u2(d))
t )

2 + 8 cos(1.2t) + w
(d)
t (4.24)

y
(d)
t =

(x
(d)
t )

2

20
+ v

(d)
t (4.25)

where d = 1 . . . 4, u1 = [2, 4, 1, 3]T , u2 = [3, 4, 1, 2]T , w
(d)
t ∼ N(0, 10), v

(d)
t ∼ N(0, 1), and

x
(d)
0 ∼ N (0, 5). Each experiment had 200 time steps, and the results were averaged over

100 different experiments. We used n = 4, r0 = 3, and p = 3 in the IFGT. In Table 4.1 we

compare the root mean square error (RMSE) and timing results for the different algorithms

when using the IFGT and when using direct evaluation of (2.55), (4.23). In the upper

group of algorithms we compare the results when using the MPF with the AMPF proposal

distribution and with the AMPF-IS proposal distribution that we developed in this work. In

the bottom of the Table we show the results obtained when using the SIS particle filter. It

can be seen that the new AMPF-IS proposal distribution significantly improves the RMSE

over the AMPF proposal distribution, and that increasing the number of samples m used in

the AMPF-IS proposal distribution, decreases the RMSE. Furthermore the use of the IFGT
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Table 4.1: Time [sec], and RMSE when using the AMPF and AMPF-IS proposal distributions
with direct evaluation and IFGT, and when using the SIS particle filter

.

Algorithm Direct IFGT N m
RMSE time (sec) RMSE time (sec)

AMPF 6.3 46.2 6.4 3.7 1000 1
AMPF-IS 5.9 12.3 5.9 2 500 10
AMPF-IS 5.5 12.6 5.5 2.8 500 50
AMPF-IS 5.6 14.5 5.5 3.8 500 100
AMPF-IS 5.6 46.6 5.7 4.3 1000 10
AMPF-IS 5.2 49.2 5.3 6 1000 50
AMPF-IS 5.1 51.4 5.2 8.2 1000 100

SIS 6 1.9 5000
SIS 5.6 3.8 10000
SIS 5.5 5 15000
SIS 5.4 8.2 20000

instead of the direct evaluation speeds up the execution time significantly while increasing

the error only slightly. The timing and RMSE results using the AMPF-IS with the IFGT

are comparable to the results obtained using the SIS particle filter, however the number of

samples in the SIS particle filter is significantly larger.

In Table 4.2 we show the RMSE and timing results obtained for different values of r0

and truncation orders p for the same nonlinear filtering example using n = 4, m0 = 50 and

N = 1000. Each experiment had 200 time steps, and the results were averaged over 100

different experiments. It can be seen that the results verify what is predicted by the new

bounds (a) the error increases as the value of r0 increases (b) the error decreases as the value

of p increases (c) satisfactory RMSE performance can be obtained for low truncation orders.

Tables such as Table 4.2 can be used to find the optimal compromise between accuracy and

speed of the filtering algorithm.

Example 2

In the next example we apply the new nonlinear filtering framework to the task of bearings

only tracking of a single target in a sensor network [11], [16]. The state vector xk includes

the position of the target and its velocity on the x− y plane, and takes the form

xk+1 =

(
I2 ∆tI2

0 I2

)
xk +

( (∆t)2

2
I2

∆tI2

)
wk (4.26)
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Table 4.2: Time [sec], and RMSE for different values of r0 and p when using the AMPF-IS
proposal distribution with the IFGT

r0�p 1 3 5 7
RMSE time (sec) RMSE time (sec) RMSE time (sec) RMSE time (sec)

1 5.5 4.8 5.4 5.7 5.3 9.4 5.3 19.2
2 5.6 4.5 5.4 5.2 5.4 8 5.3 15.5
3 5.6 3.9 5.5 4.4 5.4 6.4 5.4 11.8
4 5.8 3.4 5.6 3.9 5.5 5.5 5.5 9.2
5 5.9 3.2 5.7 3.3 5.7 4.3 5.6 6.4

where ∆t is the time difference between two consecutive measurements, I2 denotes the

2× 2 identity matrix, and wk ∼ N (0,Σ). The measurement equation which we use follows

the model used in [13]

zk ∼ WC

(
arctan

(
yk − ȳ

xk − x̄

)
, ρ

)
(4.27)

where (x̄, ȳ) denotes the position of the sensor, and where WC(µ, ρ), denotes the two pa-

rameter wrapped Cauchy distribution [15], that takes the form

f(zk|µ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(zk − µ)
, (4.28)

where 0 ≤ ρ ≤ 1, −π < zk, µ < π.

Each sensor has to choose the next leader sensor to perform the filtering once it has

performed the measurement update. We use the scheme that was used in [11] where the new

leader `∗ is chosen using the following decision rule

`∗ = arg min
i∈Ω(i)

[(x̄i − xk+1|k)
2 + (ȳi − yk+1|k)

2] (4.29)

where Ω(`) denotes the set of sensors that sensor ` can communicate with, (x̄i, ȳi) are the

coordinates of sensor i, and (xk+1|k, yk+1|k) is the one step ahead prediction made by the

previous leader for the location of the target. Once the new leader sensor is chosen, the

previous leader sensor transmits its state estimate p̂(xk|z1:k) to the new leader sensor.

For the experiments presented here we used ∆t = 1, and Σ = 0.5I2, where the track with

200 time steps was generated once and used for all the experiments. The measurements were

generated using ρ = 1 − σ2, where we used σ = 0.02 to generate the measurements, and

σ = 0.1 to evaluate p(zk|x(i)
k ) in (2.48) since this was necessary in order to avoid divergence
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Table 4.3: Time [sec], and RMSE when using the AMPF and AMPF-IS proposal distributions
with direct evaluation and IFGT, and when using the SIS particle filter

Algorithm Direct IFGT N m
RMSE Time RMSE Time

xk yk ẋk ẏk xk yk ẋk ẏk

AMPF 12.01 11.65 1.16 1.27 14.45 19.94 12.36 1.28 1.32 2.91 600 1
AMPF-IS 3.09 3.37 0.93 1 14.68 2.73 3.3 0.88 0.98 3.63 600 20
AMPF-IS 2.27 2.92 0.88 0.97 15.23 2.67 3.38 0.89 0.99 4.43 600 50
AMPF 3.33 4.4 0.95 1.06 39.34 8.74 8.47 1.09 1.17 5.26 1000 1

AMPF-IS 2.25 2.84 0.88 0.96 39.95 2.08 2.83 0.86 0.95 6.73 1000 20
AMPF-IS 2.14 2.82 0.87 0.95 40.81 2.1 2.81 0.87 0.95 8.35 1000 50

SIS 11.21 10.95 1.18 1.22 0.23 500
SIS 3.56 3.35 0.93 0.99 0.35 1000
SIS 2.15 2.78 0.86 0.96 0.55 2000
SIS 2.07 2.62 0.85 0.93 1.08 4000

from the real track for all the tested algorithms. The initial state estimate that we used was

distributed as N ([x0; y0]
T , 100I2). For approximating the AMPF-IS integral using (4.22) we

use σ = 0.02. We used n = 4, r0 = 3, and p = 5 in the IFGT. The timing and RMSE results

were averaged over 100 different runs. The sensor network included 200 sensors. Figure

3 shows the sensors, the target’s track, and its estimate for a single experiment using the

AMPF-IS and the IFGT algorithm.

Table 4.3 shows the RMSE and timing results for the tracking experiments. It can be

seen that using the AMPF-IS and the IFGT we can obtain similar RMSE results to the

SIS particle filter using fewer particles, however the SIS filter is faster. It should be noted

that since in such a sensor network application the particles have to be transmitted between

the different sensors, energy conservation requirements mandate using as few samples as

possible. Thus using fewer samples may be more important than the computation time. It

can also be seen that the IFGT improves the computation time over the direct evaluation,

and the use of the AMPF-IS proposal distribution significantly improves the RMSE results

over using the AMPF proposal distribution.

4.3.3 Choosing r0 vs. choosing the number of clusters

As was discussed previously, the new bounds suggest that one has to choose r0 such that the

radius of the balls that are used to cluster the data is r0σ. This is as opposed to the approach

taken in [8] where one had to specify the number of clusters instead. In order to compare
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Figure 4.3: The sensor network, the real and the estimated tracks

Table 4.4: Time [sec], and RMSE when using the AMPF-IS proposal distribution and IFGT
for the example in Example 1 for different values of r0 and K

r0 RMSE Time (sec) K RMSE Time (sec)
3 5.6 4.2 10 5.5 4.2
2 5.35 5 15 5.36 5
1 5.35 6 20 5.35 5.8

Table 4.5: Time [sec], and RMSE when using the AMPF-IS proposal distribution and IFGT
for the example in Example 2 for different values of r0 and K

r0 RMSE Time (sec) K RMSE Time (sec)
xk yk ẋk ẏk xk yk ẋk ẏk

3 2.26 2.84 0.87 0.96 8.5 140 2.37 2.9 0.88 0.96 11.6
2 2.28 2.81 0.86 0.95 11.4 170 3.2 4.5 0.9 1 13.5
1 2.42 2.94 0.88 0.97 14.94 200 2.35 2.86 0.88 0.96 15.38

these two approaches for the nonlinear filtering case we show the results of the two nonlinear

filtering examples for different choices of r0, and K in Tables 4.4 and 4.5 respectively. The

minimal value for K was chosen such that none of the experiments diverged.

It can be seen that similar results can be obtained when fixing the right parameters for

r0 or K, however the values for r0 remain the same for the two filtering examples, whereas

the values for K change significantly between the two examples. This indicates that the

formulation that is proposed here may have a significant advantage for the nonlinear filtering

case as it requires less effort when choosing the IFGT parameters.
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4.4 Conclusion

In this chapter we considered the use of the IFGT to perform fast KDE for evaluating

the Chapman Kolmogorov equation in nonlinear filtering. We presented new upper error

bounds for the IFGT which are significantly tighter than the existing bound. We related the

truncation error to the distance of a source point from the center of the expansion and to the

order of truncation for any target point analytically, and we showed that this error increases

as the radius increases, and decreases as the truncation order increases. Since in practice

the IFGT parameters have to be fixed experimentally, the new bounds facilitate the choice

of parameters. We applied the IFGT to nonlinear filtering using the new AMPF-IS proposal

distribution that uses IS to approximate not only the integrals in Bayes recursion equations,

but also to approximate the integral in the AMPF. The experimental results using the new

framework verify its effectiveness and show that it can be used to reduce the number of

particles that have to be used. We also examined the effect that the IFGT parameters have

on the nonlinear filtering performance, and confirmed the predictions of the the new bounds.
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Chapter 5

Robust Minimax Estimation in a

Linear Gaussian Model

In Chapter 3 we reviewed robust estimation in linear Gaussian models using the difference

and ratio regret estimators [28, 29]. The difference and ratio regret estimators assume that

the the eigenvector matrix of Cx is known and is identical to the eigenvector matrix of

HT C−1
w H , which can also be interpreted as assuming that they are diagonalized by the

same unitary matrix. We therefore refer to this assumption here as the jointly diagonalizable

matrices assumption. Furthermore the region of uncertainty is expressed using upper and

lower bounds on each of the eigenvalues of Cx.

In this chapter we develop a new criterion for the robust estimation problem which we call

the generalized difference regret (GDR). Rather than subtracting the MSE when using the

MMSE estimator matched to a covariance matrix Cx from the MSE when using an estimator

x̂ = Gy, for the GDR we subtract another function of Cx and Cw. More specifically, we

develop a collection of qualifications that this function should satisfy, which are aimed at

guaranteeing the scale independence of the obtained estimator and ensuring that the GDR

criterion is not more pessimistic than the MSE criterion. Functions satisfying these criteria

are termed admissible regret functions. While the choice of an admissible regret function is

far from unique, in this paper, we make one suggestion which we use as the basis for the

development of a new robust estimator.

The estimator we propose here generalizes the ideas in both [28] and [29] in a number

of ways and can thus be used to address a far broader range of estimation problems. Most

importantly, our approach does not require the joint diagonalizability assumption and allows

for uncertainty in both the eigenvalues as well as the individual elements of Cx. Our GDR-
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based scheme can also be computed easily using semidefinite programming. When consid-

ering only eigenvalue uncertainties and using the joint diagonalizable matrices assumption,

we show that the resulting estimator is identical to the difference regret estimator. This

result gives insight into why the new criterion is an effective tool for designing robust esti-

mators, and helps to explain the experimental results. Additionally, we are able to show that

our proposed admissible regret function is also a lower bound on the MSE when using the

MMSE estimator matched to a covariance matrix Cx, provided that a certain commutability

assumption (which is a relaxed version of the joint diagonalizability assumption) holds. This

gives additional motivation for our choice.

We test the GDR estimator using two examples. First we consider the same example

used in [28,29] when the covariance matrix is obtained from a stationary process and where

the MSE is computed using the same samples that are used to find the robust estimator,

and also use it for cases in which the joint diagonalizable matrices assumption does not

hold. Subsequently we consider using the GDR estimator in an estimation problem in a

sensor network, where unlike the previous example different samples are used to compute

the MSE and to find the estimator. A major concern in sensor networks applications is

the power loss due to the communication of messages between the sensor nodes rather than

the energy lost during computation [22, 46]. We show that the GDR estimator can be used

to reduce the number of samples which have to be transmitted to a centralized location in

order to estimate a covariance matrix which is required in order to use the MMSE estimator.

The experimental results of the new estimator show improved MSE compared to presently

available methods.

5.1 Minimax estimation with joint eigenvalue and ele-

mentwise covariance uncertainties using the GDR

criterion

In this section we propose a new criterion for the minimax problem which we call the gener-

alized difference regret (GDR) criterion, and subsequently we use this criterion to develop a

new robust estimator which has two major differences compared to the difference and ratio

regret estimators. It does not necessitate the joint diagonalizable matrices assumption, and

the region of uncertainty can be defined as the intersection of the eigenvalue and elementwise

uncertainty regions.
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As was demonstrated in [28], the MSE is a very conservative criterion for the minimax

estimation problem and performs poorly, therefore the difference regret criterion was moti-

vated as being less pessimistic than the MSE criterion. We define the GDR as the difference

between the MSE when using an estimator G and a function f(Cx, Cw)

<g(Cx, G) = Tr(GCwGT ) + Tr(Cx(I −GH)T (I −GH))− f(Cx, Cw). (5.1)

It can be seen that if we take f(Cx, Cw) equal to the MSE when using the MMSE estimator

matched to a covariance matrix Cx (3.26), then we obtain the difference regret as a special

case of the GDR criterion. More generally we consider functions f(Cx, Cw) that satisfy the

qualifications given in the following:

Definition 3. A function f(Cx, Cw) is called an admissible regret function if it satisfies the

following:

1. f(Cx, Cw) ≥ 0

2. f(αCx, αCw) = αf(Cx, Cw), ∀ α > 0.

The first qualification ensures that the GDR in (5.1) is not greater than the MSE when

using an estimator G as in (3.25) since the GDR criterion in (5.1) is defined as the difference

between the MSE when using an estimator G and the function f(Cx, Cw), and therefore it

is not more pessimistic than the MSE criterion. Using the second qualification we have that

the GDR criterion satisfies

<g(αCx, αCw) = α<g(Cx, Cw), ∀ α > 0, (5.2)

and therefore the second qualification ensures that the obtained estimator is invariant to the

scaling of Cx and Cw.

In Lemma 4 we give the admissible regret function which we use to develop the new GDR

estimator in Theorem 3. The admissible regret function that we propose is convex in Cx and

leads to a GDR criterion which is a convex-concave function (i.e. convex in G and concave

in Cx), and simplifies the solution of the minimax problem significantly using the results of

Lemma 3. We give more motivation for this choice of an admissible regret function in the

next section.

Lemma 4. Let Cx = V ∆V T where ∆ is a diagonal matrix with the nonnegative elements

{δi}m
i=1 and where V is a unitary matrix and where `i ≤ δi ≤ ui, and let HT C−1

w H = TΛT T
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where Λ is a diagonal matrix with the nonnegative elements {λi}m
i=1 and where T is a unitary

matrix. Let

f(δ, Cw) = Tr(P 2(Λ1/2T T V ∆V T TΛ1/2 + I)−1), (5.3)

where P is a diagonal matrix with the diagonal elements
√

`i + κi(δi − `i), and where κi =

(
√

ui +
√

`i)
−1. We then have that f(δ, Cw) is an admissible regret function and convex in

δ.

Proof. The nonnegativity of f(δ, Cw) follows since P (Λ1/2T T V ∆V T TΛ1/2 + I)−1P is a

positive semidefinite matrix. To prove the second qualification of Definition 3 we note that

Λ1/2T T V ∆V T TΛ1/2 is invariant to the scaling of δ and Cw, and that the scaling of ` and

u is the same as that of δ. Therefore we have

f(αδ, αCw) = Tr((P α)2(Λ1/2T T V ∆V T TΛ1/2 + I)−1) = αf(δ, Cw), (5.4)

where the P α is a diagonal matrix with the diagonal elements
√

α`i +(
√

α`i +
√

αui)
−1(αδi−

α`i). In order to show that f(δ, Cw) is convex in δ, we will shown that its epigraph is a

convex set (see equivalent conditions for convexity in Chapter 3). Using Lemma 1 the

epigraph of f(δ, Cw) is the set

{
τ

∣∣∣∣∣
[

X P

P Λ1/2T T V ∆V T TΛ1/2 + I

]
� 0, τ = Tr(X)

}
, (5.5)

which is the projection on one of the dimensions (τ) of a convex set, where the set is convex

since it is the intersection of two other convex sets, one is a proper cone and the other is an

affine hyperplane.

Next we derive in theorem 3 the new minimax estimator that uses the GDR criterion.

Theorem 3. Let x denote the unknown parameter vector in the linear Gaussian model

y = Hx + w where H ∈ Rn×m and where x ∈ Rm and w ∈ Rn are independent zero mean

Gaussian random vectors with covariance matrices Cx and Cw respectively. Let U and L

denote elementwise upper and lower bounds on the elements of Cx such that L ≤ Cx ≤ U ,

and let V denote a unitary matrix such that Cx = V ∆V T where ∆ is a diagonal matrix

with the diagonal elements δi such that 0 ≤ `i ≤ δi ≤ ui, i = 1, . . . ,m. Furthermore,

let HT C−1
w H = TΛT T where Λ is a diagonal matrix with the diagonal elements λi ≥ 0,
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i = 1, . . . ,m and where T is a unitary matrix. Then the solution to the problem

min
x̂=Gy

max
δ∈Ω

<g(∆, G), (5.6)

where

<g(∆, G) = Tr(GCwGT ) + Tr(V ∆V T (I −GH)T (I −GH))

− Tr(P 2(Λ1/2T T V ∆V T TΛ1/2 + I)−1),

(5.7)

and where Ω = {δ|∆ = diag(δ), L ≤ V ∆V T ≤ U , `i ≤ δi ≤ ui}, takes the form

G = V ∆V T HT (HV ∆V T HT + Cw)−1 (5.8)

where the diagonal elements of ∆ can be obtained as follows

1. δ can be obtained by solving the semidefinite program

min
Z1,Z2,δ

Tr(Z1 + Z2 −∆) (5.9)

subject to [
Z1 ∆V T HT

HV ∆ Cw + HV ∆V T HT

]
� 0[

Z2 P

P Λ1/2T T V ∆V T TΛ1/2 + I

]
� 0

`i ≤ δi ≤ ui

L ≤ V ∆V T ≤ U

(5.10)

where P is defined as in Lemma 4.

2. If V = T , then δ can be obtained by solving the semidefinite program

min
z1,z2,δ

m∑
i=1

(z
(i)
1 /λi + z

(i)
2 ) (5.11)
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subject to [
z

(i)
1 1

1 1 + λiδi

]
� 0[

z
(i)
2

√
`i + κi(δi − `i)√

`i + κi(δi − `i) 1 + λiδi

]
� 0

`i ≤ δi ≤ ui

L ≤ V ∆V T ≤ U

(5.12)

where κi = (
√

ui +
√

`i)
−1.

Proof. In order to show that the estimator takes the form in (5.8) we note that <g(∆, G) in

(5.7) and the minimax problem (5.6) satisfy all the conditions of Lemma 3 and therefore the

order of minimization and maximization can be interchanged. Minimizing (5.7) with respect

to G leads to a solution in the form of the MMSE estimator with a covariance matrix given

by Cx = V ∆V T as is given in (5.8). Substituting (5.8) into (5.7) then leads to the objective

for the maximization part, which is simply the difference between the MSE when using the

MMSE estimator (3.26) with Cx = V ∆V T and f(δ) in (5.3),

max
δ∈Ω

{Tr((HT C−1
w H + V ∆−1V T )−1)− Tr(P 2(Λ1/2T T V ∆V T TΛ1/2 + I)−1)} (5.13)

Additionally we have Tr((HT C−1
w H + V ∆−1V T )−1) = Tr(((HV )T C−1

w HV + ∆−1)−1)

and using the matrix inversion Lemma [32] we have

((HV )T C−1
w HV + ∆−1)−1 = ∆−∆V T HT (Cw + HV ∆V T HT )−1HV ∆. (5.14)

We can now rewrite (5.13) as

min
Z1,Z2,δ

Tr(Z1 + Z2 −∆) (5.15)

subject to

∆V T HT (Cw + HV ∆V T HT )−1HV ∆ � Z1

P (Λ1/2T T V ∆V T TΛ1/2 + I)−1P � Z2

`i ≤ δi ≤ ui

L ≤ V ∆V T ≤ U

(5.16)

and using Lemma 1 we obtain the semidefinite program in (5.9), (5.10), which proves 1.
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In order to prove 2 we use V = T in (5.13) which simplifies to

max
δ∈Ω

m∑
i=1

(
1

λi

− 1/λi

1 + λiδi

− (
√

`i + κi(δi − `i))
2

1 + λiδi

)
(5.17)

By adding the inequalities:

1

1 + λiδi

≤ z
(i)
1

(
√

`i + κi(δi − `i))
2

1 + λiδi

≤ z
(i)
2

and using Lemma 1, it follows that the δi’s are obtained using the semidefinite program given

by (5.11), (5.12).

The computational complexity of the semidefinite program in 1 is O(m4) whereas the

computational complexity of the semidefinite program in 2 is O(m3) [33]. Therefore if joint

diagonalizability holds it can be used to reduce the computational complexity. Furthermore

the semidefinite program can be solved efficiently and accurately using standard toolboxes

e.g. [55].

5.2 Relationship of the GDR to the difference regret

estimator

In this section we study some properties of the GDR estimator which give some motivation

for our choice of the admissible regret function that we use in the GDR criterion. We

first show that when assuming joint diagonalizability and when considering only eigenvalue

uncertainties then the GDR estimator that we obtain is identical to the difference regret

estimator. Subsequently we show that the admissible regret function that we proposed

in Section 5.1 is also a lower bound on the difference regret when using a commutability

assumption which is a relaxed version of the joint diagonalizability assumption.

5.2.1 Equivalence of the GDR estimator with eigenvalue alone

uncertainties to the difference regret estimator

Although a closed form solution of the difference regret estimator assuming that HT Cw
−1H =

V ΛV T and with eigenvalue alone uncertainty region was presented in [28], it is interesting
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to derive the closed form solution to the GDR estimator under the same assumptions since

it provides us with important insight concerning our approach. In order to derive the closed

form solution we maximize the objective in (5.17) with respect to δ over the uncertainty set

Ω = {δ|`i ≤ δi ≤ ui}. Since the objective is concave, if its maximum is obtained inside the

uncertainty interval then it is also the solution to the constrained problem. Solving for the

maximum of the unconstrained problem we have that the solution must satisfy the quadratic

equation

δ2
i +

2

λi

δi +
(
√

`i − κi`i)(2κi − λi

√
`i + λi`iκi)− 1

κ2
i λi

= 0, (5.18)

and its solution takes the form

δi = − 1

λi

+
1

λi

√
1− λi

κ2
i

(
√

`i − κi`i)(2κi − λi

√
`i + λi`iκi) +

λi

κ2
i

=
1

λi

(
√

1 + λiui + λi`i + λ2
i `iui − 1). (5.19)

It is straightforward to verify that (5.19) satisfies `i ≤ δi ≤ ui and therefore it is also

the solution to the constrained problem. Furthermore, if we define ζi = (ui + `i)/2 and

εi = (ui − `i)/2 then we obtain that

δi =
1

λi

(√
(1 + λiζi)2 − λ2

i ε
2
i − 1

)
, (5.20)

which is identical to the solution that is obtained for the difference regret estimator (3.30).

This result indicates that if the elementwise bounds are very loose (as may be the case

in high SNR scenarios), and if the joint diagonalizable matrices assumption holds then the

performance is going to be identical to that of the difference regret estimator. It also gives

us insight into why the GDR criterion performs well experimentally, since it leads to the

same solution as the difference regret criterion under the same assumptions in this case.

5.2.2 The GDR as a lower bound on the MSE obtained using the

MMSE estimator

In this subsection we show that using a commutability assumption, which can be interpreted

as a relaxed version of the joint diagonalizability assumption, the admissible regret function

that we use in the admissible regret function that we use can also be obtained as a lower

bound on the MSE when using the MMSE estimator matched to a covariance matrix Cx.
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Let Q = ∆1/2V T TΛ1/2 and assume that Q and QT are commutable i.e. they satisfy

QQT = QT Q (this clearly holds if V = T but also for example if ∆ = Λ and V T T = T T V ).

Using Cx = V ∆V T and HT C−1
w H = TΛT T in (3.26) we have

Tr((HT C−1
w H + C−1

x )−1) = Tr((V T TΛT T V + ∆−1)−1) = Tr(∆(QQT + I)−1)

= Tr(∆(QT Q + I)−1) ≥ Tr(P 2(QT Q + I)−1) (5.21)

where the equality in (5.21) follows from the commutability assumption. Since the lower

bound in (5.21) is equal to (5.3), in order to prove our claim we will show that

Tr((∆− P 2)(QT Q + I)−1) ≥ 0, ∀ `i ≤ δi ≤ ui. (5.22)

Assume that ∆−P 2 � 0 then we can define A = ((∆−P 2)1/2(QT Q + I)−1/2 where (·)1/2

denotes the nonnegative symmetric square root of a matrix. We can now write the left hand

side of (5.22) as

Tr((∆− P 2)(QT Q + I)−1) = Tr(AAT ) ≥ 0. (5.23)

Therefore all that there is left to show is that ∆−P 2 is indeed a positive semidefinite matrix

in the region of uncertainty. Since P and ∆ are diagonal matrices this is equivalent to

δi − (
√

`i + κi(δi − `i))
2 ≥ 0, ∀`i ≤ δi ≤ ui, (5.24)

and since δi is nonnegative it suffices to show that

pi(δi) =
√

`i + κi(δi − `i) ≤
√

δi, ∀`i ≤ δi ≤ ui. (5.25)

We note that
√

δi is concave and since pi(δi) is the line segment that connects the two points

`i and ui on the graph of
√

δi, the line segment must lie bellow the graph which proves (5.25).

Our choice of admissible regret function can therefore be interpreted as relaxing a lower

bound on the MSE when using the MMSE estimator matched to covariance matrix Cx,

which is only valid if the commutability assumption holds. It is important to emphasize

however that since the solution of the minimax problem in Section 5.1 is obtained without

any of the commutability or joint diagonalizability assumptions, the GDR estimator can

be used generally also when these assumptions do not hold. This is also verified by the

experimental results that are given in the next section.
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5.3 Example of the GDR estimator

The example that we consider here is an estimation problem with the model given in (3.22),

where x is a length m segment of a zero mean stationary first order autoregressive process

with parameter ρ and where the covariance matrix of w is Cw = σ2I. The autocorrelation

function of x therefore takes the form

E(xixj) = ρ|j−i|, (5.26)

and where w is a Gaussian random vector independent of x with the covariance matrix

Cw = σ2I where σ is assumed to be known. In the following subsection we discuss the

estimation of covariance matrix and the uncertainty region for the problem.

5.3.1 Estimating the uncertainty region

The covariance matrix of x, which is denoted by Cx, is unknown and can be estimated from

the available noisy measurements vector y using the estimator

Ĉx = [H†(Ĉy −Cw)H†T ]+ = [H†(Ĉy − σ2I)H†T ]+ (5.27)

where the estimate of the covariance matrix of y takes the form [28]

Ĉy(i, j) =
1

n

n−|j−i|∑
k=1

ykyk+|j−i|, (5.28)

and where [C]+ is obtained by replacing all the negative eigenvalues of C with zero. Specif-

ically let C = UQU−1 where Q is a diagonal matrix, then [C]+ = UQ̄U−1 where Q̄ is

a diagonal matrix with the elements q̄ii = max (0, qii). Since the estimators considered in

this paper assume that the eigenvector matrix of the parameter’s covariance V is known, we

set it equal to the eigenvector matrix of Ĉx (more on the estimation of the eigenvectors of

covariance matrices can be found in [53]). Let ζi denote the eigenvalues of Ĉx then similarly

to [28,29] we set the upper and lower bounds for the eigenvalues of the covariance matrix as

ui = ζi + εi, `i = ζi− εi, where εi is proportional to the standard deviation of an estimate σ̂2
x

of the variance σ2
x.

If H = I then we have

σ̂2
x =

1

n

n∑
i=1

y2
i − σ2, (5.29)
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and the variance of σ̂2
x takes the form:

E
{
(σ̂2

x − σ2
x)

2
}

= E
{(

1

n

n∑
i=1

(y2
i − σ2

w − σ2
x)

)2}

=
1

n2

n∑
i,j=1

E(titj), (5.30)

where ti = y2
i − σ2 − σ2

x. Since x and w are Gaussian and independent we have

E
{
(σ̂2

x − σ2
x)

2
}

=
2

n2

n∑
i,j=1

(Cx(i, j) + σ2δij)
2. (5.31)

The expression given in (5.31) for the variance of the estimate is slightly different from that

given in [28] since we did not assume that the covariance matrix is circular which leads to

the simplified expression given in [28] as this is only true in the limit when n →∞ [54].

If H 6= I then we have the following estimator for the variance of the signal

σ̂2
x =

1

n
(Tr(H†yyT H†T )− Tr(H†CwH†T )), (5.32)

and therefore the variance of the estimator is

E
{
(σ̂2

x − σ2
x)

2
}

=
1

n2
E
{(

Tr(yyT H†T H†)− Tr(Cx + H†CwH†T )
)2}

=
1

n2
E
{
(Tr(yyT H†T H†))2

}
− 1

n2
(Tr(Cx + H†CwH†T ))2. (5.33)

Denoting H = H†T H† we have

E{(Tr(yyT H ))2} =
n∑

i,j,k,`=1

E{yiyjyky`}Hi,jHk,` =
n∑

i,j=1

Hi,jTr(E{yiyjyyT}H ). (5.34)

We use the following result from [56] that if y ∼ N (m,Σ) then

E((yT Ay)yyT ) = (Σ + mmT )(A + AT )(Σ + mmT )

+ mT Am(Σ−mmT ) + Tr(AΣ)(Σ + mmT ). (5.35)

Since y ∼ N (0, HCxHT + Cw) we can use in (5.35) m = 0, Σ = HCxHT + Cw, and

A = Ei,j where Ei,j is an n × n matrix with all zero entries but for the i, j entry which is
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1. Therefore we have

E{yiyjyyT} = Σ(Ei,j + ET
i,j)Σ + Tr(Ei,jΣ)Σ. (5.36)

Summarizing (5.33), (5.34), and (5.36) we obtain that the variance of the estimator σ̂2
x is

E
{
(σ̂2

x − σ2
x)

2
}

=
1

n2

n∑
i,j=1

Hi,jTr((Σ(Ei,j + ET
i,j)Σ + Tr(Ei,jΣ)Σ)H )

− 1

n2
(Tr(Cx + H†CwH†T ))2. (5.37)

In order to ensure the nonnegativity of the eigenvalues, εi takes the form

εi = min

(
ζi, A ·

√
E
{
(σ̂2

x − σ2
x)

2
})

, (5.38)

where the estimate Ĉx(i, j) is used instead of Cx(i, j) in (5.31) or (5.37) in order to compute

the variance of σ̂2
x, and where A is a proportionality constant chosen experimentally.

The elementwise bounds are chosen to be proportional to σ̂2
x, and inversely proportional

to the standard deviation of σ̂2
x. Choosing the elements of the covariance matrix to be

proportional to the variance is very intuitive since if the variance is large then the elements

of the covariance matrix are expected to be larger, and alternatively if the variance is small

then the elements of the covariance matrix are expected to be smaller. The motivation for

choosing the elementwise to be inversely proportionality to the standard deviation of σ̂2
x is

less intuitive though. We argue that if the standard deviation of σ̂2
x is small then we would

like the bounds to be very loose so that we only employ the eigenvalue uncertainties, and

on the other hand if the standard deviation of σ̂2
x is large then we can not obtain a good

estimate of σx and therefore the bounds should be very small such that the estimator is close

to G = 0. We therefore set the elementwise bounds to

U (i, j) = −L(i, j) = B
Ĉx(1, 1)√

E
{
(σ̂2

x − σ2
x)

2
} , (5.39)

where B is a proportionality constant, and the estimate Ĉx(i, j) is used in (5.31) or (5.37)

instead of Cx(i, j) in order to compute the variance of σ̂2
x.
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Figure 5.1: MSE vs. the SNR for the GDR estimator, difference and ratio regret estimators,
and the MMSE estimator matched to the estimated covariance, for H = I

5.3.2 Experimental results

Figure 5.1 shows the MSE vs. SNR for H = I. This model satisfies the constraint

HT C−1
w H = V ΛV T , which is required by the difference and ratio regret estimators, for

any orthonormal matrix V . Furthermore we can use the more computationally efficient im-

plementation given in Theorem 3 for this case. The parameters that we used were n = 10,

σ = 1, A = 4, B = 1, ρ = 0.8, and the MSE was averaged over 2000 independent exper-

iments for each SNR value. It can be seen that the GDR estimator can improve the MSE

compared to all the other estimators. Since the joint digonalizable matrices assumption

holds for this example it follows from Section 5.2.1 that the results obtained using the GDR

estimator with eigenvalue alone uncertainties are the same as those obtained using the dif-

ference regret estimator. This explains the convergence of the GDR estimator with the joint

elementwise and eigenvalue uncertainties to the difference regret estimator in high SNRs,

since the elementwise uncertainty was chosen to be very large for high SNRs. It can also be

seen that the GDR estimator converges to the ratio regret estimator in low SNRs, which can

be explained as an effect of the elementwise bounds. Since the elements of the covariance
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Figure 5.2: MSE vs. SNR for the GDR estimator and for the MMSE estimator matched to
the estimated covariance, with H in a toeplitz form

matrix are bounded, then it can be seen from (5.8) that as the variance of the noise increases

the estimator converges to G = 0.

Figures 5.2 and 5.3 show the MSE vs. SNR when H is a toeplitz matrix and a diagonal

matrix respectively such that the joint diagonalizable matrices assumption does not hold.

Specifically in Figure 5.2 we use a toeplitz matrix which implements a linear time invariant

filter with 4 taps given by h[0] = 1, h[1] = 0.4, h[2] = 0.2, h[3] = 0.1, and in Figure 5.3 we

use the diagonal matrix H = diag([1, 0.8, 1, 0.5, 1.3, 1.2, 1.5, 0.7, 2, 1.5]T ) where the diagonal

elements were chosen arbitrarily. In both Figures we used the parameters n = 10, σ = 1,

A = 4, B = 2, ρ = 0.8, and the GDR eigenvalue alone estimator was obtained by removing

the elementwise uncertainty constraint from (5.10). It can be seen from both of the Figures

that the MSE can be improved significantly when using the GDR estimator compared to

using the MMSE estimator.

66



Figure 5.3: MSE vs. SNR for the GDR estimator and for the MMSE estimator matched to
the estimated covariance, with H in a diagonal form

5.4 Robust estimation in a sensor network

As explained in Chapter 3 when performing estimation in a sensor network, power conserva-

tion is one of the major concerns. The more energy efficient approaches transmit messages

between the sensor nodes and have the sensors perform the estimation collectively, such as

the decentralized estimation algorithms presented in [37,38]. Nevertheless these distributed

estimation algorithms depend on an estimate of the covariance or inverse covariance matrix,

and therefore in practice require an initial stage where many samples are transmitted to a

centralized location so that the covariance matrix or inverse covariance matrix matrix can

be estimated. The results presented in this chapter can be used to improve the estimation

performance for a given number of samples that are transmitted to the centralized location

and used in order to obtain the estimator. Furthermore since in the GDR estimator has the

same form as the MMSE estimator then one can use the same methods presented in [37,38]

to perform distributed estimation.
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The estimation model for the sensor network case is

y = x + w, (5.40)

where we assume that each node’s signal is a scalar (extension to the vector case is straight-

forward) and the Gaussian random vector x is composed of all the sensors’ signals. Similarly

the vector y is composed of all the sensors’ noisy observations. The Gaussian random noise

vector w where the covariance matrix of w is Cw = σ2I. This model is identical to (3.22)

with H = I, and therefore satisfies the constraint HT C−1
w H = V ΛV T which is required by

the difference and ratio regret estimators for any orthonormal matrix V . Unlike the previous

examples, in this example we use a different set of samples for finding the estimator and for

testing its performance and therefore the elementwise bounds used in the previous example

do not apply in this case. However since in a sensor network the variance at each sensor can

be estimated without transmitting any data (assuming that the observation noise is i.i.d.),

we can assume that it is known and use the bound for the elements of the covariance matrix

Cx [52]

|Cx(i, j)| ≤ σx,iσx,j ∀ i, j ∈ 1, . . . , n, (5.41)

where σx,i denotes the true standard deviation of sensor i, in order to obtain the required

elementwise bounds.

In order to simulate the sensors’ signals we assume that the covariance matrix is obtained

from a Gaussian process (GP) [44,47] as such modeling is common in sensor networks e.g. [45].

We use a zero mean GP with a neural network covariance function [44] that takes the form

k(s, s′) =
2

π
sin−1

(
2s̃TΣs̃′√

(1 + 2s̃TΣs̃)(1 + 2s̃′TΣs̃′)

)
, (5.42)

where s̃ = [ 1 sT ]T , and we used Σ = diag([10, 10, 10]T ). We generate the positions of 20

sensors {sj, j = 1, . . . , 20} by sampling a uniform distribution over [−2, 2] for both of the

axes. The covariance matrix of the signal vector x is then obtained by Cx(i, j) = k(si, sj),

and the measurement vectors y(i), i = 1, . . . , n available at the centralized location are

generated using (5.40). The covariance matrix is then estimated from the available samples

using

Ĉx =

[
1

n

n∑
i=1

yiy
T
i − σ2I

]
+

, (5.43)

where σ2 denotes the variance of the noise which is assumed known, and [C]+ is obtained
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Figure 5.4: MSE vs. SNR for different estimators

by replacing the negative eigenvalues of C with zero. Let ζi denote the eigenvalues of Ĉx

then we set the bounds on the eigenvalues to be `i = 0, and ui = 2ζi. The bounds on the

elements of the covariance matrix are set using (5.41) to U (i, j) =
√

Cx(i, i)Cx(j, j) and

L(i, j) = −
√

Cx(i, i)Cx(j, j), where Cx(i, i) denotes the true variance of the signal at sensor

node i which as mentioned previously is assumed to be known.

In order to show the usefulness of the GDR estimator for the sensor network problem we

assume that we have only n = 5 measurement vectors at the centralized location using which

we can obtain the robust estimator for x. We averaged the MSE shown in Figure 5.4 over

2000 experiments, where in each experiment we first generated n = 5 measurements from

the linear Gaussian model which were used to obtain the robust estimator, and subsequently

we computed the MSE using 2000 measurements which were different from those that were

used to find the robust estimator. It can be seen that the GDR estimator either improves or

performs equally as well as the other estimators. Furthermore since the joint diagonalizable

matrices assumption holds for this example, for high SNRs when the elementwise bounds are

very loose we have that the performance of the GDR estimator with joint elementwise and

eigenvalue uncertainties converges to that of the difference regret estimator, as is shown in
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Section 5.2.1. Similarly to the example in the previous section it can be seen that the GDR

converges to the ratio regret estimator for low SNRs, which is the effect of the elementwise

bounds on the covariance matrix.

5.5 Conclusion

We presented a new minimax estimator that is robust to an uncertainty region that is

described using bounds on the eigenvalues and bounds on the elements of the covariance

matrix. The estimator is based on a new criterion which is called the generalized difference

regret (GDR) and can be obtained efficiently using semidefinite programming. Furthermore

the GDR estimator avoids the joint diagonalizable matrices assumption that is required by

both the difference and ratio regret estimators and can therefore be used in more general

cases. We also showed that when the joint diagonalizable matrices assumption holds and

when there are only eigenvalue uncertainties, then the GDR estimator is identical to the

difference regret estimator. This result gives motivation into why the proposed criterion

is successful, and explains the convergence of the GDR estimator with joint elementwise

and eigenvalue uncertainties to the difference regret estimator in high SNRs when the joint

diagonalizable matrices assumption holds. The experimental results show that the GDR

estimator can improve the MSE over the MMSE estimator and the difference and ratio regret

estimators. When considering model matrices that do not satisfy the joint diagonalizable

matrices assumption we also showed significant MSE improvement compared to the MMSE

estimator.
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Chapter 6

Robust Parameter Estimation with

Sensor Positional Uncertainty

Whereas in the previous chapter we considered robust estimation of a random parameter

vector, in this chapter we turn to estimating a deterministic parameter. There has been

much recent work on robust estimation of a deterministic parameter in the linear Gaussian

model e.g. [26], [27], however in many cases the observation model represents some physical

system which is not linear. In this chapter we consider robust parameter estimation with

sensor positional uncertainty, where the measurements are obtained from electromagnetic

induction (EMI) sensors. These parameters are an integral part of the buried unexploded

ordnance (UXO) classification schemes used in [57], [58], and therefore as was reported in [57],

obtaining better parameter estimates by addressing the sensor positional uncertainties is

necessary in order to improve the classifier’s performance.

The approach that we present in this chapter for the parameter estimation with sensor

positional uncertainty is an extension of the method presented in [57] where the parameter

estimation is formulated as a minimax problem. Specifically, using the robust optimization

tools discussed in Chapter 3 we propose a nonlinear programming (NLP) approach instead

of the dynamic programming (DP) approach that was presented in [57]. The DP approach

assumes a discretization of the uncertainty set, and can be shown to converge to the optimal

solution if the discretization is fine enough. Nevertheless, as the discretization becomes finer

the computational complexity increases significantly and practical considerations necessitate

using an approximate DP approach. The NLP approach avoids the discretization stage

which is necessary in the DP approach to solving the minimax problem, and therefore has

the potential to improve the performance in practice.
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In the next section we describe the measurement model which was used in [57,58], and is

also known as the dipole model. We then review the robust parameter estimation approach

that was used in [57], and finally present the new nonlinear programming approach to the

problem. Future work will include simulation and validation of the new approach.

6.1 The measurement model and nonlinear least squares

parameter estimation

The dipole model that was given in [57], [58] is a truncated version of the EMI physical

model in [59], [60]. According to this model the measurements collected at M frequency or

time steps, and at N locations with nominal coordinates r̄i = (xi, yi, zi), take the form

di,j = gi(r0)
T R(α)ΛjRf i(r0) + ni,j = si,j + ni,j, i = 1, . . . , N, j = 1, . . . ,M (6.1)

where gi(r0) and f i(r0) are 3× 1 vectors holding the x, y, z components of the transmitted

field and the sensitivity function of the receiver [58] respectively, both of which are related

to the coordinates of the UXO object given by r0 = [x0, y0, z0]
T . The matrix R is a 3 × 3

rotation matrix that is related to the 3× 1 vector of Euler angles, and Λj is a 3× 3 diagonal

matrix with the diagonal elements

λk(ωj) =
∞∑

`=1

ak,`ωj

√
−1

pk,` + ωj

√
−1

, k = 1, . . . , 3 (6.2)

λk(tj) = −
∞∑

`=1

ak,`pk,`e
−pk,`tu(tj), k = 1, . . . , 3 (6.3)

where ak,` is the expansion coefficient for the `th term corresponding to the kth axis, pk,`

is the `th pole of the kth axis, and u(t) is a unit step function. Equations (6.2) and (6.3)

apply only to the case of nonferrous objects. When the object is ferrous a DC term must be

added to (6.2), and a Dirac delta to (6.3). The final term in (6.1) is an additive Gaussian

noise with variance σ2
i .

The measurement model given in (6.1) is therefore related to the following parameters:

object coordinates, object orientation angles, expansion coefficients, and the poles. The UXO

classification schemes in [58] only use the poles as the features to the classification algorithms.

Furthermore they make use of a single pole for each axis, and these poles are estimated using

nonlinear least squares. Let ν = [aT , rT
0 , αT ]T denote the nuisance parameters which are not
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used in the UXO classification scheme then the nonlinear least squares parameter estimation

is obtained using

p̂j = arg min
p,ν

N∑
i=1

M∑
j=1

(di,j − si,j(p, ν))2/σ2
i , (6.4)

which can be solved iteratively using any gradient based optimization algorithm [43], though

the solution is only guaranteed to be locally optimal.

6.2 Previous work on parameter estimation with posi-

tional uncertainty with the dipole model

A major drawback of the nonlinear least squares approach given in (6.4) is that it assumes

that the sensors’ locations are known perfectly, whereas in practice the sensors’ positions are

only known to be in some nominal location. Often dead reckoning or inertial navigation may

be used to estimate the sensors’ locations, however this process is clearly error prone. Even

sensor locations that were obtained using a global positioning system (GPS) are subject

to uncertainty which may influence the poles’ estimates, and have a negative effect on the

classification performance. Parameter estimation in the dipole model with sensor positional

uncertainty was considered in [57]. Specifically, a robust approach was proposed in which

the poles are estimated by solving a minimax optimization problem that minimizes over

the estimates of the poles and the nuisance parameters, and maximizes over the sensors’

locations in some region of uncertainty. The minimax problem was solved under several

positional uncertainty scenarios, which can also be considered as having some prior model

for the positional error accumulation along the course. The fist observation that is used to

define the uncertainty region is that they can be bounded by some prior knowledge about the

measurement error of the positional measurement device (e.g. GPS). Furthermore, since the

physical process of obtaining the measurements involves a human operator that in general can

be expected to move in a straight line, one can expect the positional errors to be correlated

as well. Let ri = r̄i + δri denote the real coordinates vector of the ith sensor, where δri

is the perturbation from the nominal position ri, then the uncertainty region involves some

form of constraints on the perturbation errors δri. Let Ω denote the uncertainty region of

the sensors’ positions, and assuming that the measurement model (6.1) can be approximated

using a first order Taylor series expansion around the nominal sensor position r̄, then the
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parameter estimation takes the form:

min
p,ν

max
δr∈Ω

M∑
i=1

N∑
j=1

(di,j − si,j(p, ν, r̄i)−Ai,jδri)
2 = min

p,ν
max
δr∈Ω

M∑
i=1

‖d̄i − Āiδr‖2 (6.5)

where Ai,j denotes the 1×3 vector whose elements are the first order term in the Taylor series

expansion of si,j with respect to the sensor coordinates vector r, Āi = [AT
i,1, A

T
i,2, . . . ,A

T
i,N ]T ,

and d̄i is the appropriately chosen vector such that the equality holds.

The following uncertainty regions were considered in [57]:

• Polyhedral and independent: Under this model the positional error for each sensor is

independent of the other sensors, and each sensor is assumed to be within a known

polyhedral region around the nominal sensor position. The optimal solution of the

maximization part in such a case is achieved at one of the corners of the polyhedral

region, and can be found by testing each of the corners to find the one that maximizes

the objective function.

• Ellipsoidal-shaped and independent: In this case the positional errors are also inde-

pendent of each other, and the uncertainty region is on the boundary of the ellipsoid

δrT diag([`−1
x , `−1

y , `−1
z ]T )δr = 1, where `x, `y, `z are the parameters that define the el-

lipsoid and are obtained from some prior knowledge about the uncertainty region. The

closed form solution to the maximization problem under the ellipsoidal uncertainty

region was also presented in [57].

• Box-shaped and dependent: In this model the positional perturbations of the sensor

are assumed to satisfy the constraint δri = αδri−1 + δr′i where δr′i is the innovation.

If the innovations were a realization of a Gaussian noise then this model would be

identical to a first order autoregressive process, however in this case it is only assumed

that δri are bounded in a box (which also means that the innovation can not be

Gaussian since they are bounded as well). The solution to the maximization problem

using this uncertainty region can be obtained using DP, where first the innovations δr′i

are discreteized, and subsequently the DP algorithm is used to find optimal solution.

Clearly as the discretization becomes finer the computational complexity increases

significantly, and therefore an approximate DP algorithm was used in practice.

Let c(p, ν) denote the optimal solution to the maximization problem using any of the

above models, then the approach used in [57] to solve the minimax problem was to use a

nonlinear gradient based algorithm in order to find the solution that minimizes c(p, ν).
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In the next section we present a new approach which extends the box-shaped and depen-

dent perturbation model that was discussed previously.

6.3 A nonlinear programming approach to robust pa-

rameter estimation with sensor positional uncer-

tainty

The uncertainty model that we propose follows the dependent perturbations model described

in the previous section, where instead of assuming that the innovations are bounded in a

box we assume that they are bounded in an ellipsoid. The uncertainty region in this case

can be written as

Ω = {δr
∣∣∣δr′Ti Rδr′i ≤ L2/n, δri = αδri−1 + δr′i} (6.6)

where n denotes the number of sensors, R = diag([`−1
x `−1

y `−1
z ]T ), and L is some constant.

Let Γα,i be a matrix such that Γα,iδr = δr′ ⇔ δri = αδri−1 + δr′i, ∀i = 2, . . . ,M , then

the uncertainty region is equivalent to

Ω = {δr
∣∣∣δrTΓT

α,iRΓα,iδr ≤ L2/n} (6.7)

The Lagrangian for the inner maximization takes the form

L(δr, λ) = (d̃− Ãδr)T (d̃− Ãδr) +
n∑

i=1

λi(L
2/n− δrTΓT

α,iRΓα,iδr). (6.8)

where Ã = blkdiag(Ā1, . . . , ĀM), d̃ = [d̄
T
1 , . . . , d̄

T
M ]T . Maximizing with respect to δr we

have
∂L(δr, λ)

∂δr
= −2Ã

T
(d̃− Ãδr)− 2

n∑
i=1

λiΓ
T
α,iRΓα,iδr = 0, (6.9)

and therefore the solution for δr is

δr∗ = −(
n∑

i=1

λiΓ
T
α,iRΓα,i − Ã

T
Ã)−1Ã

T
d̃. (6.10)
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Using (6.10) in (6.8) we obtain the dual function

g(λ) = d̃
T
d̃ + d̃

T
Ã(

n∑
i=1

λiΓ
T
α,iRΓα,i − Ã

T
Ã)−1Ã

T
d̃ + L2/n

n∑
i=1

λi. (6.11)

By minimizing the dual function we obtain the dual problem for the inner maximization

which takes the form

min
λ

{
d̃

T
d̃ + (Ã

T
d̃)T (

n∑
i=1

λiΓ
T
α,iRΓα,i − Ã

T
Ã)−1(Ã

T
d̃) + L2/n2

n∑
i=1

λi

}
(6.12)

subject to ∑n
i=1 λiΓ

T
α,iRΓα,i − Ã

T
Ã � 0

λ ≥ 0
(6.13)

Using Lemma 1 it is straightforward to show that the optimization problem (6.12) subject

to (6.13) is convex, and can be written as

min
λ,τ

{d̃T
d̃ + τ + L2/n

n∑
i=1

λi} (6.14)

subject to [
τ (Ã

T
d̃)T

Ã
T
d̃

∑n
i=1 λiΓ

T
α,iRΓα,i − Ã

T
Ã

]
� 0

λ ≥ 0

(6.15)

The dual problem for the inner maximization is therefore a semidefinite program. Since

the primal problem is not convex (it is a maximization problem over a convex function),

Slater’s conditions are not satisfied and strong duality is not guaranteed. The optimal value

for the dual is an upper bound on the optimal value for the primal. Hence solving the dual

problem provides an upper bound on the primal. Moreover it can easily be shown to be

finite. We show this by considering the dual problem of (6.5) with the uncertainty region

given by

Ω = {δr
∣∣∣ n∑

i=1

δrTΓT
α,iRΓα,iδr ≤ L2}. (6.16)

In this case we obtain that the dual problem is also a semidefinite program that takes the

form

min
λ,τ

{d̃T
d̃ + τ + λL2} (6.17)
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subject to [
τ (Ã

T
d̃)T

Ã
T
d̃ λ

∑n
i=1 ΓT

α,iRΓα,i − Ã
T
Ã

]
� 0

λ ≥ 0

(6.18)

Let λ∗ denote the optimal solution to the problem (6.17), (6.18) then we can obtain the same

objective value in (6.14), (6.15) simply by taking λi = λ∗/n, and therefore the solution to the

second problem is an upper bound on the solution to the first problem. Furthermore since

in the second problem we have an optimization problem over a quadratic objective with a

single quadratic inequality, strong duality holds even though the problem is not convex. The

solution to the second problem is bounded, and since the second problem is an upper bound

on the first we have that the solution to the first problem is bounded as well.

By replacing the maximization problem in (6.5) with its dual problem, which is a mini-

mization problem, we can solve for the parameters by minimizing (6.14), (6.15) with respect

to the parameters p and ν as well. The problem is no longer convex in this case, however

there exist techniques that solve such nonlinear semidefinite programs iteratively [61], [62]

and are guaranteed to converge to a locally optimal solution.
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Chapter 7

Conclusions and Future Work

In this dissertation we studied difference estimation scenarios, and presented new methods

that address important issues and challenges in the areas of nonlinear and robust estima-

tion. The major contributions of this dissertation in the area of nonlinear filtering are the

introduction of a new proposal distribution, the AMPF-IS which was shown to improve the

AMPF proposal distribution significantly, and the new performance bounds for the IFGT

which facilitate the choice of the parameters of the IFGT and enable its use within the fil-

tering framework. The significance of the new IFGT performance bounds extends beyond

the area of nonlinear filtering, and is also important to many other fields that rely on fast

KDE such as computer vision [3] and machine learning [63]. The new bounds can also be

easily used to develop a hybrid dual tree IFGT algorithm for fast kernel density estimation,

building on the strengths of each of these algorithms. Such an algorithm was developed for

the FGT [64] however it was not developed for the IFGT because of the several issues that

existed with the previously existing bounds. The minor contribution of this dissertation in

the area of nonlinear filtering is the application of the IFGT to the particle filtering problem.

Previous work has employed the FGT for this purpose [2], however in this work we used the

IFGT which performs better than the FGT in high dimensions.

In the area of robust estimation we considered robust estimation in the linear Gaussian

model. The major contribution of this dissertation in this field was the introduction of

the GDR estimator which extends the difference regret estimator presented in [28] such

that the limiting assumption of joint diagonalizability is no longer required, and to define

the region of uncertainty as the intersection between an eigenvalue and an elementwise

uncertainty set. Both of these extensions were demonstrated to improve the results obtained

using the difference regret estimator and the MMSE estimator. We also showed that when
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joint diagonalizability holds and when considering only eigenvalue uncertainties then the

GDR estimator is identical to the difference regret estimator. The most interesting possible

extension to this line of work is to find the GDR estimator with uncertainties on the elements

of the inverse covariance matrix. Furthermore, since we showed that the GDR criterion that

we used is an upper bound on the difference regret provided that joint diagonalizability

holds, it is interesting to develop other bounds on the MSE using more principled methods

such as the Weiss-Weinstein bound [65] [66], and see if they are useful for developing new

criteria for the minimax problem. This may also be a good approach in order to solve the

problem when there are elementwise uncertainties in the inverse covariance matrix.

Finally we considered the use of the robust optimization techniques that were discussed in

this dissertation to robust parameter estimation under sensor positional uncertainty. The ro-

bust parameter estimation problem is motivated by a UXO classification problem which uses

these parameters as the features for the classification problem. A new nonlinear program-

ming approach was proposed to replace the approximate dynamic programming approach

that was considered in [57]. Future work will include the simulation and validation of the

nonlinear programming approach to the problem.
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