
Northeastern University

Mathematics Dissertations Department of Mathematics

January 01, 2012

Orbit closures of quiver representations
Kavita Sutar
Northeastern University

This work is available open access, hosted by Northeastern University.

Recommended Citation
Sutar, Kavita, "Orbit closures of quiver representations" (2012). Mathematics Dissertations. Paper 19. http://hdl.handle.net/2047/
d20002410

http://iris.lib.neu.edu/math_diss
http://iris.lib.neu.edu/mathematics
http://hdl.handle.net/2047/d20002410
http://hdl.handle.net/2047/d20002410


ORBIT CLOSURES OF QUIVER REPRESENTATIONS

A dissertation presented

by

Kavita Sutar

to

Department of Mathematics

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in the field of

Mathematics

Northeastern University

Boston, MA

February 2012

1



ORBIT CLOSURES OF QUIVER REPRESENTATIONS

by

Kavita Sutar

ABSTRACT OF DISSERTATION

Submitted in the partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Mathematics

in the graduate school of Arts and Sciences of

Northeastern University, February 2012

2



Abstract

Let Q be a Dynkin quiver. We study orbit closures in Rep(Q, d), the affine space of quiver

representations of a fixed dimension vector. The orbits arise from the action of Gl(d) on

Rep(Q, d) and we consider their closure in the Zariski topology.

We investigate the properties of coordinate rings of orbit closures for quivers of type

A3 by considering the desingularization given by Reineke [Rei03]. We construct explicit

minimal free resolutions of the defining ideals of the orbit closures thus giving us a minimal

set of generators for the defining ideal. The resolution allows us to read off some geometric

properties of the orbit closure. In addition, we give a characterization for the orbit closure

to be Gorenstein.

Next, we investigate orbit closures of Dynkin quivers with every vertex being source

or sink. We use this resolution to derive the normality of such orbit closures. As a

consequence we obtain the normality of certain orbit closures of type E.

Finally we consider orbit closures of type equioriented An. In this context we consider

varieties Z(β, γ) defined by Schofield [Sch92] and obtain conditions for these varieties to

be orbit closures. We also obtain resolutions for a class of orbit closures and recover

normality for this class. This is a special case of a more general result of Abeasis, Del Fra

and Kraft [ADFK81].

Keywords : Quiver representations, orbit closures, desingularization, minimal free res-

olution, normal, Cohen-Macaulay, Gorenstein, Lascoux-Kempf-Weyman, geometric tech-

nique, Bott’s theorem, vector bundles, Dynkin quiver.
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Introduction

The object of the thesis is to study closures of orbits of quiver representations. The space

Rep(Q, d) of representations of a quiver Q of a fixed dimension vector d can be viewed

as an affine space. The algebraic group Gl(d) acts on Rep(Q, d) by simultaneous change

of basis at each vertex of Q. The orbits of this action are isomorphism classes of quiver

representations. The closures of these orbits in the Zariski topology are the objects of

our interest. For a representation V of quiver Q, we denote the closure of the orbit of

V by OV . The above situation generalizes two classical problems from linear algebra:

the classification of endomorphisms of a vector space and the classification of linear maps

between two vector spaces. In the latter case, the corresponding orbit closures are the

well-known determinantal varieties.

There are two aspects of our work. One is demonstrating the use of the geometric

technique (also referred to as the Kempf-Lascoux-Weyman technique in literature) in

calculating resolutions of varieties. It is based on Kempf’s collapsing for homogeneous

vector bundles [Kem76] and is a powerful technique for syzygy calculations. The orbit

closures described above admit a desingularization which is ideal for the application of

the technique.

The other aspect is the study of the geometry of these orbit closures. Like determinan-

tal varieties, these orbit closures provide good examples of varieties and are of intrinsic

interest to geometers. They have been objects of considerable interest and research in the
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recent years. A good survey of the current state of research in orbit closures can be found

in [Zwa11].

Using the geometric technique we can calculate a minimal free complex F• supported

in the variety OV for any V ∈ Rep(Q, d) where Q is a Dynkin quiver. If F• has no terms in

negative degrees then it provides a resolution of the coordinate ring of the normalization

of OV . Furthermore, if F0 is the coordinate ring of the affine space Rep(Q, d) then OV

itself is normal so that in this case F• gives a resolution of the coordinate ring of OV .

It should be pointed out that the resolution obtained by the geometric technique in the

case of quiver 1 → 2 is the same as Lascoux’s resolution; in this sense our resolutions

generalize Lascoux’s resolution.

An important ingredient in the calculation is the desingularization Z of OV . The

construction of such a desingularization was given by Reineke [Rei03]. His construction

holds for orbit closures arising from representations of any Dynkin quiver Q. The desin-

gularization Z obtained by this construction is an incidence variety in the product space

Rep(Q, d)×
∏
x∈Q0

Flag(d∗(x), Vx). Here Flag(d∗(x), Vx) denotes the variety of flags of di-

mensions specified by d∗(x) contained in the vector space Vx at vertex x of quiver Q.

The number of subspaces in the flag and the dimensions d∗(x) depend on the choice of a

directed partition of the Auslander-Reiten quiver of Q. For calculation reasons explained

in Section 2.2, it is convenient to work with desingularizations for which the flags are of

length one that is, when Z ⊂ Rep(Q, d)×
∏
x∈Q0

Gr(d(x), Vx) . We call such Z a 1-step

desingularization. A representation V of Q admits a 1-step desingularization when all

its indecomposable summands lie in exactly 2 parts of the partitioned Auslander-Reiten

quiver. In theory, this restriction is not required for calculating a resolution but in order

to simplify calculations we impose this condition on our orbit closures.

11



One of the strengths of the geometric technique is in the use of Bott’s theorem which

makes the calculation of the resolution algorithmic in some sense. In Section 4.1, we

introduce the difference estimate D(λ) which denotes the degree of the term in F• that a

certain module (corresponding to λ) appears in. The key to showing that F• is a resolution

lies in proving that D(λ) is non-negative for every λ. In fact we show something stronger,

that D(λ) ≥ EQ where EQ is the Euler form of the quiver Q (this serves our purpose

since EQ > 0 for Dynkin quiver Q). This we prove in the case of non-equioriented

A3 (Proposition 4.1.4), for source-sink quivers (Theorem 5.1.3) and for equioriented An

(Proposition 6.0.8). The proofs of these results involve combinatorics of Young tableaux

and Bott’s algorithm.

As a consequence, we effectively have an algorithm for calculating resolutions of orbit

closures of representations of Dynkin quivers. These resolutions encode a lot of infor-

mation about the geometry of the corresponding variety. In all the cases we consider,

we are able to prove that the orbit closures are normal, Cohen-Macaulay with rational

singularities. From the first term of the resolution one can read whether the defining ideal

is determinantal (generated by some minors) or not. In any case one can tell what the

generators of the defining ideal are. By analyzing the last term of the resolution once can

draw inferences about the Gorenstein property. The existence of a resolution opens up

many directions for exploring the geometric and algebraic properties of orbit closures.

The thesis is organized as follows: Chapters 1, 2 and 3 consist of background material.

In Chapter 1 we discuss quivers and their representations and give a brief overview of

Auslander-Reiten theory relevant to our context. Chapter 2 contains a review of orbit

closures and a description of Reineke’s desingularization for the same. In Chapter 3 we

describe the geometric technique which is central to the calculation of resolutions.
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Chapters 4, 5 and 6 form the crux of the thesis work. In Chapter 4 we consider the

non-equioriented A3 quiver. This quiver is special because its Auslander-Reiten quiver

admits a partition into 2 parts. This enables every orbit closure OV to admit a 1-step

desingularization, a very desirable property. As a consequence the results obtained in

this chapter hold for all orbit closures corresponding to non-equioriented A3. First we

contruct a minimal free resolution of the coordinate ring of OV (Section 4.1). We use

this resolution to draw conclusions about geometric properties of OV ; in particular we

show that OV is normal, Cohen-Macaulay and has rational singularities. This result is

not new: Bobiński and Zwara show in [BZ01] that the orbit closures corresponding to An

with arbitrary orientation are normal, Cohen-Macaulay with rational singularities. What

is new is the resolution of the defining ideal of OV and consequently the method in which

the conclusion is drawn. Next, we find a closed form for the first term F1 of the resolution;

this enables us to describe in detail the nature of generators for the defining ideal of OV

(Section 4.2). We also analyze the last term of the resolution to investigate the Gorenstein

property. We derive a sufficient condition for any normal orbit closure arising from a

Dynkin quiver to be Gorenstein (Theorem 4.3.4). In case of non-equioriented A3 quiver

we prove a characterization of the Gorenstein property for OV . This characterization is

based on the occurence of indecomposables as summands of V with certain multiplicities

so our proof proceeds case-by-case. Investigating the Gorenstein property in this manner

for larger quivers appears to be quite complicated.

In Chapter 5 we consider the case of Dynkin quivers with orientation such that every

vertex is either a source or a sink. We call these source-sink quivers. The resolution of

orbit closures admitting a 1-step desingularization is calculated. The fact that the terms

of these resolutions lie in positive degrees implies that the corresponding orbit closures are

13



normal, Cohen-Macaulay with rational singularities. This is a hitherto unknown result

for Dynkin quivers of type E6, E7 and E8.

The case of equioriented An is considered in Chapter 6. The heart of the matter

is again to show that the difference estimate D(λ) is non-negative. Once this is done,

the geometric technique enables us to calculate resolutions of orbit closures admitting

a 1-step desingularization. The result that orbit closures for equioriented An are nor-

mal, Cohen-Macaulay with rational singularities was first proven by Abeasis, Del Fra and

Kraft in [ADFK81]. Their work initiated the study of orbit closures of representations

of quivers. We recover this result for orbit closures in our case using the resolution of

their defining ideals. An interesting generalization of these orbit closures are the varieties

Y (β, γ) obtained as images of Schofield’s incidence varieties Z(β, γ) [Sch92,DSW07]. We

obtain conditions on dimension vectors β and γ for the variety Y (β, γ) to be an orbit

closure. The positivity of the difference estimate D(λ) is true for the general varieties

Y (β, γ), so that we can construct a resolution of Y (β, γ) whenever Z(β, γ) is its desin-

gularization. This is an interesting generalization and there are many possibilities to be

explored here.

A word about the actual computations: these involve calculating the exterior powers

of a certain vector bundle ξ using Cauchy’s formula. This calculation makes use of the

Littlewood-Richardson rule for tensoring Schur functors. Then we associate weights to

the resulting vector bundles and use Bott’s theorem to calculate the contribution of the

vector bundles to the complex F•. This is a long computation to do by hand. Fortunately,

there exists a computer program that can do this calculation. This program developed

by Jerzy Weyman and Jason Ribeiro calculates the contributions of the exterior powers∧t ξ. The program is in its last stages of development and will be available online soon.
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Chapter 1

Quivers

A quiver Q = (Q0, Q1) is a directed graph with Q0 being its set of vertices and Q1 being

its set of arrows. A representation of a quiver Q is an assignment of finite dimensional

vector spaces to the vertices and linear maps to the arrows of Q. Quiver representa-

tions were originally introduced to study problems in linear algebra. Later it was found

that quiver representations play an important role in studying representations of finite-

dimensional algebras and also appear in the study of Kac-Moody Lie algebras, quantum

groups, geometric invariant theory etc.

In Section 1.1 we introduce some preliminary notions related to quivers and their

representations which we use in our work. In Section 1.2 we review parts of Auslander-

Reiten theory relevant to this thesis. Most of our notation and terminology is adopted

from the book ‘Elements of the representation theory of Associative Algebras’ by Assem,

Simson and Skowroński [ASS06].

15



1. Quivers 16

1.1 Quiver representations

Definition 1.1.1. A quiver is a pair Q = (Q0, Q1) where Q0 is the set of vertices and

Q1 is a set of arrows.

For any arrow a in Q1, we let ta denote the tail (starting point) and ha denote the

head (ending point) of a; thus any arrow a can be denoted as ta
a→ ha.

Thus a quiver is simply an oriented graph without any restriction on the number of

vertices and arrow and on the orientation of arrows. The term ‘quiver’ is used instead of

‘graph’ mainly to differentiate the subject material from graph theory and uses of graphs

in other areas of mathematics.

A quiver Q is said to be finite if both Q0 and Q1 are finite sets. The underlying

graph Q̂ is the undirected graph obtained by forgetting the orientation of arrows of Q. A

connected quiver is one whose underlying graph is connected.

A Dynkin quiver is a quiver whose underlying unoriented graph is one of the following

Dynkin diagrams:

An

Dn

E6

E7

E8

A path of length k in a quiver is a sequence of k arrows a1a2 . . . ak such that hai =
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tai+1. The composition of two paths is defined by concatenation:

a1 . . . ak ◦ b1 . . . bl =


a1 . . . akb1 . . . bl if hak = tb1

0 otherwise

The constant path at vertex i will be denoted by εi.

Definition 1.1.2. The path algebra KQ of a quiver Q is a K-algebra whose underlying

K-vector space has basis all paths in Q and product of two basis vectors is the composition

of paths.

KQ is finite dimensional if and only if Q is finite and has no oriented cycles.

Definition 1.1.3. A representation V = ((Vi)i∈Q0 , (V (a))a∈Q1) of Q is given by as-

signing a finite dimensional K-vector space Vi to every vertex i ∈ Q0 and K-linear

maps Vta
V (a)→ Vha to every arrow a ∈ Q1. The dimension vector of a representa-

tion ((Vx)x∈Q0 , (V (a))a∈Q1) is defined as the function d : Q0 −→ Z given by d(x) = dim

(Vx).

A representation V is thus determined by the dimension vector d and the maps Vta →

Vha. Given representations V = ((Vi)i∈Q0 , (V (a))a∈Q1) and W = ((Wi)i∈Q0 , (W (a))a∈Q1)

of Q, a morphism Φ : V → W is a collection of K-linear maps φi : Vi → Wi such that for

every a ∈ Q1, the square

Vta

φta
��

V (a) // Vha

φha
��

Wta
W (a) //Wha

commutes.
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With this definition of morphisms, the collection of all representations of a quiver Q

(over K) forms an abelian category which we denote by RepK(Q) [ASS06, Chapter 3].

The full subcategory of RepK(Q) consisting of finite-dimensional representations will be

denoted by repK(Q).

The representation space Rep(Q, d) of a quiver Q is the collection of all represen-

tations of Q of fixed dimension vector d. Note that we can think of Rep(Q, d) as the set∏
a∈Q1

Hom(Kdta , Kdha). Thus, Rep(Q, d) is a finite dimensional K-vector space with an

affine structure.

We can introduce a non-symmetric bilinear form, called the Euler form, on the space

of dimension vectors of representations of a quiver Q as follows. For α, β ∈ N|Q0| define

〈α, β〉 =
∑
x∈Q0

α(x)β(x)−
∑
a∈Q1

α(ta)β(ha) (1.1.1)

In particular, this gives

〈α, α〉 =
∑
x∈Q0

α(x)2 −
∑
a∈Q1

α(ta)α(ha) (1.1.2)

Let Gl(α) =
∏
i∈Q0

Gl(αi, K). Then
∑
x∈Q0

α(x)2 = dim Gl(α) and

∑
a∈Q1

α(ta)α(ha) = dim RepK(Q,α). Thus we have

〈α, α〉 = dim Gl(α)− dim RepK(Q,α) (1.1.3)
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1.2 Auslander-Reiten quiver

Gabriel [Gab72] proved that the set of isomorphism classes of indecomposable represen-

tations of Q is in bijective correspondence with the set of positive roots R+ of the cor-

responding root systems. Under this correspondence, simple roots correspond to simple

objects. Every representation of Q can be written uniquely (upto permutation of factors)

as a direct sum of indecomposable representations

V =
⊕
α∈R+

mαXα

(where mα = multiplicity of Xα in V ). The indecomposable representations can be

obtained as the vertices of the Auslander-Reiten quiver of Q.

Definition 1.2.1. Let A be a basic and connected finite dimensional algebra. The

Auslander-Reiten quiver Γ(mod A) of mod A is defined as:

(1) The vertices are the isomorphism classes [X] of indecomposables modules X in

mod A.

(2) For vertices [M ], [N ] the arrows [M ]→ [N ] are in bijective correspondence with the

vectors of a basis of the K-vector space of the irreducible morphisms M → N .

If Q is a finite acyclic quiver then the path algebra KQ is a basic, connected, finite-

dimensional K-algebra. The category mod KQ is representation-finite, which means there

are finitely many isomorphism classes of indecomposable KQ-modules. As a result, the

quiver Γ(mod KQ) is a finite quiver. Also, every irreducible morphism f : M → N is

either a monomorphism or epimorphism and if M = N , then f must be an isomorphism

since M is finite-dimensional K-vector space. Thus Γ(mod KQ) has no loops.
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For a finite acyclic quiver Q (without relations) the simple, indecomposable projective

and indecomposable injective modules over KQ are easy to describe.

(1) The simple modules correspond to the representations ((Si)i∈Q0 , (Sa)a∈Q1) as i varies

over Q0 such that

(Si)j =


K i = j

0 i 6= j

Sa = 0 ∀a ∈ Q1.

(2) The indecomposable projectives correspond to representations ((Pi)i∈Q0 , (Pa)a∈Q1)

such that (Pi)j = Kn where n is the dimension of the vector space having as basis

the set of all paths from i to j. If a : i → j then Pa : Pi → Pj is given by right

multiplication by a.

(3) The indecomposable injectives correspond to representations ((Ii)i∈Q0 , (Ia)a∈Q1) such

that (Ii)j = Km where m is the dimension of the vector space with basis the set of

all paths from j to i. For an arrow a : i → j then Ia : Ii → Ij is given by the dual

of left multiplication by a.

Thus the number of simples equals the number of projectives equals the number of injec-

tives equals the number of vertices in Q.

Notation 1.2.2. An element of mod KQ corresponds to a representation of Q. We use

this correspondence to write the modules in mod KQ. We retain the shape of Q and at

vertex i we write Kn or n where n is the dimension of the vector space at i. For instance,
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if Q is 1→ 2 we will use either 10 or K0 to denote S1, 01 or 0K to denote S2 and 11 or

KK to denote P1 = I2.

Example 1.2.3. Let Q be the quiver 1
a←− 2

b−→ 3
c←− 4. The underlying graph of Q is the

Dynkin diagram A4. The number of positive roots in the corresponding root system is 10,

so by Gabriel’s theorem there are 10 isomorphism classes of indecomposable modules in

mod KQ. We list all the simple, indecomposable projective and indecomposable injective

modules in mod KQ:

Simple Projective Injective

S1 = K000 P1 = K000 I1 = KK00

S2 = 0K00 P2 = KKK0 I2 = 0K00

S3 = 00K0 P3 = 00K0 I3 = 0KKK

S4 = 000K P4 = 00KK I4 = 000K

Γ(mod KQ) is

KKKK

KKK0

KK00

00K0

00KK

0KKK

K000 0KK0 000K

0K00

Figure 1.1: AR quiver of source-sink A4

To construct an Auslander-Reiten quiver it is useful to know how to construct almost

split sequences. A good account of the theory of almost split sequences can be found

in [ASS06].



Chapter 2

Orbit Closures

In Section 1.2 we noted that for a quiver Q the space of quiver representations Rep(Q, d)

can be viewed as an affine space. The algebraic group Gl(d) acts on Rep(Q, d) by simul-

taneous change of basis giving rise to orbits. The Zariski closures of these orbits are the

objects of our study.

In this chapter we review some of the known results about orbit closures. For most

part we will review only those concepts which we use later. For a fuller description of the

study of orbit closures we refer to the excellent survey article of Zwara [Zwa11]. Section

2.1 contains the basic definitions and examples of orbit closures. These varieties are

singular in general. In Section 2.2 we discuss the problem of studying the singularities

in orbit closures. In our later work we make use of a particular desingularization of the

orbit closures. We explain this desingularization in section 2.2.1.
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23 Varieties of representations

2.1 Varieties of representations

We fix a finite quiver Q = (Q0, Q1) and let d ∈ N|Q0|. Define Gl(d) to be the product∏
x∈Q0

GL(d(x), K). We want to consider the following action of Gl(d) on Rep(Q, d)

((gx)x∈Q0 , (V (a))a∈Q1) 7−→ (ghaV (a)g−1ta )a∈Q1 .

The orbits of this action are the isomorphism classes of representations of Q.

Example 2.1.1. Let Q be the quiver 1
a−→ 2 and let d = (d1, d2). Then Rep(Q, (d1, d2))

is the space of all representations of Q of the form

V1
V (a)−→ V2

where dim V1 = d1, dim V2 = d2 and V (a) is a d2 × d1 matrix over K. The entries of

the matrix V (a) determine the representation, hence Rep(Q, (d1, d2)) is isomorphic to the

affine space Ad1d2 . In this case Gl(d) = Gl(d1, K) × Gl(d2, K). The action of Gl(d1, d2)

on Rep(Q, (d1, d2)) is given by

(g1, g2) ◦ V = g2(V (a))g−11 .

The orbits of this action are determined by the rank of the matrix V (a). Let 0 ≤ r ≤

min{d1, d2}. The orbits are described by

Or = {V ∈ Rep(Q, (d1, d2)) | rank V (a) = r}.
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Thus Or consists of d2 × d1 matrices of rank r. The closure of Or consists of all d2 × d1
matrices of rank atmost r

Or =
⋃
i≤r

Oi = {V ∈ Rep(Q, (d1, d2)) | rank V (a) ≤ r}.

These are the well-known determinantal varieties. The orbit closure Or is generated

by (r + 1)× (r + 1) minors of matrices V (a) ∈ Or.

For V ∈ Rep(Q, d) we will denote the orbit of V by OV . The orbits are irreducible

smooth varieties which are open in their closure in Rep(Q, d). The orbit closure OV is

not smooth in general.

Lemma 2.1.2. Let V ∈ Rep(Q,α). Then

codimOV = dim Ext1(V, V )

Proof. By the Orbit-Stabilizer theorem we have-

dim OV = dim OV

= dim GlK(α)− dim Stab(V )

= dim GlK(α)− dim AutA(V, V )

= dim GlK(α)− dim HomA(V, V )
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since AutA(V ) is open in HomA(V, V ). So

codim OV = dim Rep(Q,α)− dim Gl(d) + dim HomA(V, V )

=
∑
a∈Q1

α(ta)α(ha)−
∑
x∈Q0

α(x)2 + dim HomA(V, V )

= −〈α, α〉+ dim HomA(V, V )

= dim Ext1(V, V )− dim HomA(V, V ) + dim HomA(V, V )

= dim Ext1(V, V ).

For a more useful description of OV and OV we describe a partial order on the orbits.

Let V,W ∈ Rep(Q, d). We say that V ≤deg W (i.e. V is a degeneration of W ) if the

orbit of W is contained in the closure of the orbit of V (i.e. OW ⊂ OV ). This introduces

a partial order on the orbits. Riedtmann [Rie98] introduced another partial order given

by V ≤Hom W if dim HomQ(X, V ) ≤ dim HomQ(X,W ) for all indecomposables X in

Rep(Q, d). The connection between these two partial orders is given by

Theorem 2.1.3. (Bongartz [Bon96]) If A is a representation-directed, finite dimensional,

associative K-algebra then the partial orders ≤deg and ≤Hom coincide.

Since Rep(Q, d) satisfies the hypotheses of this theorem, the orbit of V ∈ Rep(Q, d) is

given by

OV = {W ∈ Rep(Q, d) | dim HomQ(X, V ) = dim HomQ(X,W )} (2.1.1)
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and the corresponding orbit closure is

OV = {W ∈ Rep(Q, d) | dim HomQ(X, V ) ≤ dim HomQ(X,W )} (2.1.2)

where X varies over all indecomposables in Rep(Q, d).

If Q is a Dynkin quiver, it is known that Rep(Q, d) consists of finitely many isomor-

phism classes of indecomposables hence the action of Gl(d) admits finitely many orbits.

Rep(Q, d) is irreducible implies there exists a dense Gl(d)-orbit. The orbit closures of

Dynkin quivers contain many interesting varieties. For example the Schubert varieties in

partial flag varieties are among them.

Example 2.1.4. Let us consider the partial flag variety Flag(r1, r2, . . . , rs;K
n). The

Schubert varieties are the orbits of the group B of upper-triangular matrices in Gl(n,C)

acting on Flag(r1, r2, . . . , rs;K
n) (we identify Flag(r1, r2, . . . , rs;K

n) with

Gl(n,C)/P (r1, . . . , rs)). Let Q be the quiver

x1 → x2 → . . . xn−1 → u← ys ← . . . y2 ← y1

and the dimension vectors β(xi) = i,β(u) = n, β(yj) = rj . Then the intersection of the

orbit closure with the open set of representations with all linear maps being injective gives

the fibered product Y ×B Gl(n,C) for some Schubert variety Y . All Schubert varieties

can be obtained in this way. Thus the study of the singularities of Schubert varieties of

type An is part of the study of the singularities of orbit closures for quivers of type An.
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2.2 Singularities in orbit closures

The algebraic group GL(d) acts on Rep(Q, d); for V ∈ Rep(Q, d), let OV denote the

closure of an orbit OV . Then OV is a subvariety of Rep(Q, d). It is an interesting problem

to study the type of singularities that occur in these orbit closures. The geometry of such

orbit closures was first studied by Abeasis, Del Fra and Kraft in [ADFK81]. They proved

for the case of equioriented An (over fields of characteristic zero) that the orbit closures are

normal, Cohen-Macaulay and have rational singularities. This result was generalized to

fields of arbitrary characteristic by Lakshmibai and Magyar in [LM98]. They show using

standard monomial theory that the defining ideals of orbit closures in case of equioriented

An are reduced, so the singularities of OV are identical to those of Schubert varieties.

This implies that the orbit closures are normal, Cohen-Macaulay etc. This result was

generalized to orbit closures for arbitrary quivers of type An and Dn by Bobinski and

Zwara in [BZ01] and [BZ02]. They make use of certain hom-controlled functors to reduce

the general case to a special one and draw their conclusions by comparing the special case

to Schubert varieties.

Our approach to studying orbit closures is calculating resolutions of their defining ide-

als. We use these resolutions to draw conclusions about the geometric properties of orbit

closures. To calculate resolutions we will employ Weyman’s geometric technique. A pre-

requisite for this technique is the existence of a desingularization which satisfies some more

properties as described in Chapter 3. The next section describes the desingularization we

will use.
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2.2.1 Desingularization

In [Rei03], Reineke describes an explicit method of constructing desingularizations of

orbit closures of representations of Q. The desingularizations depend on certain directed

partitions of the isomorphism classes of indecomposable objects (or equivalently of the

set of positive roots R+)-

Definition 2.2.1. A partition I∗ = (I1, · · · , Is), where R+ = I1∪· · ·∪Is, is called directed

if:

1. Ext1Q(Xα, Xβ) = 0 for all α, β ∈ It for t = 1, · · · , s.

2. HomQ(Xβ, Xα) = 0 = Ext1Q(Xα, Xβ) for all α ∈ It, β ∈ Iu, t < u

These conditions can be expressed in terms of the Euler form as-

1. 〈α, β〉 = 0 for α, β ∈ It for t = 1, · · · , s

2. 〈α, β〉 ≥ 0 ≥ 〈β, α〉 for α ∈ It, β ∈ Iu, t < u

Let Q be a Dynkin quiver and consider its Auslander-Reiten quiver Γ(mod KQ). A

partition of indecomposables exists because the category of finite-dimensional representa-

tions is directed; in particular, we can choose a sectional tilting module and let It be its

Coxeter translates. We fix a partition I∗ of Γ(mod KQ). Then the indecomposable rep-

resentations Xα are the vertices of Γ(mod KQ). For a representation V = ⊕α∈R+mαXα,

we define representations

V(t) := ⊕α∈ItmαXα, t = 1, · · · , s
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Then V = V(1) ⊕ · · · ⊕ V(s). Let dt = dim V(t). We consider the incidence variety

ZI∗,V ⊂
∏
x∈Q0

Flag(ds(x), ds−1(x) + ds(x), · · · , d2(x) + · · ·+ ds(x), Vx)×RepK(Q, d)

defined as

ZI∗,V = {((Rs(x) ⊂ Rs−1(x) ⊂ · · · ⊂ R2(x) ⊂ Vx), V ) | ∀a ∈ Q1,∀t, V (a)(Rt(ta)) ⊂ Rt(ha)}

(2.2.1)

In this case we say that Z is a (s− 1)-step desingularization.

Theorem 2.2.2 (Reineke [Rei03]). Let Q be a Dynkin quiver, I∗ a directed partition of

R+. Then the second projection

q : ZI∗,V −→ RepK(Q, d)

makes ZI∗,V a desingularization of the orbit closure OV . More precisely, q(ZI∗,V ) = OV

and q is a proper birational isomorphism of ZI∗,V and OV .

In the next section, we will realize ZI∗,V as the total space of a vector bundle over∏
x∈Q0

Flag(ds(x), ds−1(x) + ds(x), · · · , d2(x) + · · ·+ ds(x), Vx).
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The geometric technique

We refer to the method used for constructing the resolution as the geometric technique

(also referred to as the Kempf-Lascoux-Weyman geometric technique in recent literature).

The general idea is to construct a desingularization Z of OV such that Z is the total space

of a suitable vector bundle. Using the results of Kempf [Kem75] on collapsing of vector

bundles, Lascoux [Las78] gave the construction of a minimal resolution of determinantal

ideals for generic matrices. He made effective use of the combinatorics of representations

of the general linear group and Bott’s vanishing theorem for the cohomology of homo-

geneous vector bundles. The geometric technique provides a generalisation of Lascoux’s

construction.

The content of this chapter is based on the book ‘Cohomology of vector bundles and

syzygies’ by Jerzy Weyman [Wey03].

Let E be an n-dimensional vector space over an algebraically closed fieldu K. The

Grassmannian Gr(r, E) is the set of all r-dimensional subspaces of E. It can be embed-

ded in the projective space P(∧rE) using the Plücker embedding thus making Gr(r, E)

30
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a projective variety. The general linear group Gl(n,E) acts on Gr(r, E) via its natural

action on E. Gr(r, E) is the unique orbit of this action. Gl(n,E) also acts on P(∧rE) via

its linear action on ∧rE and the Plucker embedding is equivariant with respect to this

action. Thus Gr(r, E) is a homogeneous Gln-space and as a consequence it is non-singular

of dimension d(n− d).

Let E × Gr(r, E)
p−→ Gr(r, E) be the projection onto the second coordinate. This

construction defines a trivial vector bundle over Gr(r, E) of dimension n. An important

role is played by the tautological subbundles and factorbundles of the trivial vector bundle.

The tautological subbundle R is defined to be the variety

R = {(x,R) ∈ E ×Gr(r, E) | x ∈ R}.

The tautological factorbundle Q is defined to be the quotient E × Gr(r, E)/R. Thus

we have an exact sequence of vector bundles over Gr(r, E)

0→ R→ E ×Gr(r, E)→ Q→ 0

As a result we have for every R ∈ Gr(r, E) an exact sequence of fibres

0→ R→ E → E/R→ 0

Thus the dimensions of R and Q are r and n− r respectively.

Now we describe the geometric technique which we will use to construct the resolutions

of orbit closures. This technique is applicable to subvarieties Y of an affine space X which

admit a desingularization Z such that Z is the total space of a subbundle of the trivial
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vector bundle X ×V over some projective variety V. In this situation the structure sheaf

OZ can be resolved by OX×V-modules using a Koszul complex. The pushforward of this

Koszul complex by the desingularization map gives a complex F• which is supported in

Y . This is the complex we wish to calculate.

To be precise, let V be a projective variety of dimension m and X = AN
K . Let E denote

the trivial vector bundle X×V
p−→ V of dimension N . Z is a subset of X×V such that the

vector bundle S given by Z → V is a subbundle of E. Let q : X×V→ X be the projection

and suppose Y = q(Z). At this point we do not assume that Z is a desingularization of

Y .

Z

��

⊂ X × V
p //

q

��

V

Y ⊂ X

We have an exact sequence of vector bundles

0→ S→ E→ T → 0

over V where T is the quotient bundle E/S. Let the dimensions of S and T be s and t

respectively. The following is Proposition 5.1.1 in [Wey03].

Theorem 3.0.3. Let ξ denote the dual vector bundle T∗. The Koszul complex

K(ξ)• : 0→
t∧

(p∗ξ)→ · · · →
2∧

(p∗ξ)→ p∗ξ → OX×V → OZ → 0

is a locally free resolution of OZ as an OX×V-module. The differentials of this complex are

homogeneous of degree 1 in the coordinate functions on X.

Let A = K[X]. The main theorem of the geometric technique asserts that we can
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use K(ξ)• to construct the free complex F• of A-modules with homology supported in

Y . In ideal cases, F• gives a free resolution of the defining ideal of Y . Let A denote the

coordinate ring of X. The following theorem gives the existence of F•.

Theorem 3.0.4. The terms of the complex F• are free graded A-modules given by

Fi =
⊕
j≥0

Hj(V,

i+j∧
ξ)⊗K A(−i− j)

Theorem 3.0.5. Let q′ = q|Z. Suppose q′ is a birational isomorphism. Then the following

properties hold:

(a) The module q′(OZ) is the normalization of K[Y ].

(b) If Riq′∗OZ = 0 for i > 0 then F• is a finite free resolution of the normalization of

K[Y ].

(c) If Riq′∗OZ = 0 for i > 0 and F0 = H0(V,
∧0 ξ)⊗ A = A, then Y is normal and has

rational singularities.

In order to calculate the cohomology terms in Fi we apply Bott’s algorithm (Theorem

3.0.6). The flag variety V =
∏

x∈Q0
Gr(d2(x), Vx) is a homogeneous space for Gl(n,K)

(which we will denote henceforth by Gln). This makes it possible to describe vector

bundles on V in terms of weights of Gln-representations [Wey03, Proposition 4.1.3]. We

denote by L(α) the vector bundle corresponding to weight α and by Sβ the Schur module

corresponding to the weight β. The Bott’s theorem for cohomology of vector bundles

yields the following algorithm in case of V.
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Theorem 3.0.6 (Bott’s algorithm [Wey03]). Let α = (α1, ..., αn). The permutation σi =

(i, i+ 1) acts on the set of weights in the following way:

σi · α = (α1, ..., αi−1, αi+1 − 1, αi + 1, αi+2, ..., αn). (3.0.1)

If α is a nonincreasing, then R0h∗L(α) = S(α)ξ and Rih∗L(α) = 0 for i > 0. If α is not

a partition, then we start to apply the exchanges of type (3.0.1), trying to move bigger

number to the right past the smaller number. Two possibilities can occur:

1. αi+1 = αi + 1 when the exchange of type (3.0.1) leads to the same sequence. In this

case Rih∗L(α) = 0 for all i ≥ 0.

2. After applying say j exchanges, we transform α into a nonincreasing sequence β.

Then Rih∗L(α) = 0 for i 6= j and Rjh∗L(α) = S(β)ξ

The process of applying Bott’s algorithm to weights of the form (0k, λ) plays an im-

portant role in all our calculations and proofs, so it is useful to introduce some notation.

Notation 3.0.7. Whenever we apply Bott’s algorithm for the exchanges, we will refer to

it as ‘Bott exchanges’.

1. A partition λ = (λ1, λ2, · · · , λn) is a non-decreasing sequence of non-negative inte-

gers. The Young diagram corresponding to partition λ consists of λi boxes in the

ith row. The conjugate partition λ′ is the partition (λ′1, λ
′
2, · · · , λ′m) where λ′j is the

number of boxes in the jth column. We will denote the last row of a Young tableau

λ by λlast.

2. We denote by [0k, λ] the end result after applying Bott exchanges to a weight (0k, λ).
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3. Nλ will denote the number of Bott exchanges required to go from (0k, λ) to [0k, λ].

With this notation, applying Bott’s algorithm for the weight (0k, λ) gives us exactly

one of the following results -

a. During any of the successive Bott exchanges, we arrive at sequence of the form

(· · · ,m,m + 1, · · · ); in this case, the next exchange will leave the sequence un-

changed, so this is the first case of Bott’s algorithm. Then we say [0k, λ] is zero.

b. If the above case does not occur and we reach a non-increasing sequence after Nλ

Bott exchanges, then we say [0k, λ] is the resulting sequence (λ1−k, λ2−k, · · · , λp−

k, pk, λp+1, · · · , λr). Then Nλ = pk.

Example 3.0.8. Suppose λ = (4, 4, 3, 2) and k = 2 so that we want to apply Bott’s algo-

rithm to the sequence (0, 0, 4, 4, 3, 2). Exchanging λ1 with the 2 zeroes gives (2, 1, 1, 4, 3, 2)

which is not a non-increasing sequence. The first increase occurs at λ2, so we exchange

λ2 with the 2 1’s to get (2, 2, 2, 2, 3, 2). Repeating the same exercise for λ3 we see that

an exchange between the 4th and 5th terms leads to no change in the sequence. Thus

[0, 0, 4, 4, 3, 2] = 0 which is indicative of the fact that the contribution of the vector bundle

corresponding to weight (0k, λ) is zero.

Example 3.0.9. As another example consider µ = (7, 5, 1, 1) and k = 3. Consider the se-

quence (0, 0, 0, 7, 5, 1, 1). Applying Bott exchanges to µ1 and the zeroes gives the sequence

(4, 1, 1, 1, 5, 1, 1). This is not a non-increasing sequence, so we apply Bott exchanges to 5

and the three 1’s to get (4, 2, 2, 2, 2, 1, 1) which is non-increasing. Thus the contribution

of the vector bundle E corresponding to the weight (0, 0, 0, 7, 5, 1, 1) is S4,2,2,2,2,1,1E
∗ with

Nµ = 6.
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Now we show how to associate a vector bundle ξ to the desingularization described in

Section 2.2.1. Let Rt(x) and Qt(x) denote the tautological subbundle and factorbundle

respectively on Flag(dt(x), dt−1(x) + dt(x), · · · , d2(x) + · · ·+ dt(x), Vx). Note that

RepK(Q, d) =
⊕
a∈Q1

Hom(Vta, Vha) =
⊕
a∈Q1

V ∗ta ⊗ Vha.

Then the desingularization given by

ZI∗,V = {(V,Rs(x) ⊂ Rs−1(x) ⊂ · · · ⊂ R2(x) ⊂ Vx) | ∀a ∈ Q1,∀t, V (a)(Rt(ta)) ⊂ Rt(ha)}

is the total space of a vector bundle η over V, where V is the product of flag varieties∏
x∈Q0

Flag(ds(x), ds−1(x) + ds(x), · · · , d2(x) + · · ·+ ds(x), Vx). η is a subbundle of the triv-

ial vector bundle E given by ⊕
a∈Q1

V ∗ta ⊗ Vha × V→ V

Define ξ to be the dual of E/η. Then

ξ =
⊕
a∈Q1

( s∑
t=1

Rt(ta)⊗ Qt(ha)∗
)
⊂
⊕
a∈Q1

Vta ⊗ V ∗ha.

To calculate the terms of F• as in Theorem 3.0.4, we need to calculate the exterior powers

of ξ. This is a difficult problem in general since ξ is not semisimple. However if we restrict

to the case s = 1, then ξ =
⊕
a∈Q1

R1(ta)⊗ Q1(ha)∗ so that ξ is semisimple. This allows us

to apply Cauchy’s formula to calculate exterior powers of ξ. For this, let λ be a tuple of
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partitions λ(a) associated to each arrow a ∈ Q1 and let |λ| =
∑
a∈Q1

|λ(a)|. Then

t∧
ξ =

⊕
|λ|=t

t∧
ξ(λ)

where
t∧
ξ(λ) = Sλ(a)R1(ta)⊗ Sλ(a)′Q1(ha)∗

For this reason we restrict to orbit closures that admit a 1-step desingularization. With

this restriction the projective variety Flag(ds(x), ds−1(x)+ds(x), · · · , d2(x)+· · ·+dt(x), Vx)

is the Grassmannian Gr(d2(x), Vx) for every x ∈ Q0. Thus all the orbit closures we will

consider henceforth are those that admit a 1-step desingularization.



Chapter 4

Non-equioriented quiver of type A3

The first case we study is that of a non-equioriented quiver of type A3. This case is

nice in the sense that every orbit admits a 1-step desingularization. This case also yields

well to an exploration of the Gorenstein property. The results of this chapter have been

announced in the paper [Sut11b].

In Section 4.1 we demonstrate the calculation of the complex F• and using it we derive

some geometric properties of orbit closures. In Section 4.2 we use the calculations of the

previous section to give a closed form for the minimal generators of the generating ideal

of an orbit closure. Section 4.3 deals with the last term of F•. We find a necessary and

sufficient condition for the orbit closure to be Gorenstein.

4.1 Calculation of F•

We will work with non-equioriented quiver Q = A3 in the form 1
a−→ 3

b←− 2. We can

assume this orientation without loss of generality because the other orientation is covered

38
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by the equivalence of categories RepK(Q) and RepK(Qop).

Recall that any representation of Q can be expressed uniquely as a direct sum of

indecomposable representations of Q. The Auslander-Reiten quiver of Q lists all the

indecomposables along with the irreducible maps between them. We will denote the

indecomposable representations by their dimension vectors, for example, 110 will stand

for the representation K → K ← 0. With this notation we have We can construct a

KKK

0KK

00K

0K0

KK0

K00

Figure 4.1: AR quiver of 1
a−→ 3

b←− 2

partition (I1, I2) of this quiver as described in Section 2.2.1 which has the form shown in

Figure 4.2. The part on the left is I1 and that on the right is I2.

KKK

0KK

00K

0K0

KK0

K00

Figure 4.2: Partition

The fact that we have partitioned the AR quiver into two parts means that every

orbit will admit a 1-step desingularization. This important point distinguishes the case

of non-equioriented A3 quiver. Note that this is the only 2-part partition possible for the

AR quiver of 1
a−→ 3

b←− 2. These facts also hold true for the quiver with the opposite

orientation.
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Now let V = V1
Va−→ V3

Vb←− V2 be a representation of Q. By the unique decom-

position theorem, V = a(010) ⊕ b(011) ⊕ c(110) ⊕ d(111) ⊕ e(100) ⊕ f(001) where the

non-negative integers a, b, c, d, e, f denote the multiplicities with which the correspond-

ing indecomposable representations appear as a summand of V . Then the dimension

vector of V is α = (b + d + f, a + b + c + d, c + d + e). Reineke’s construction of

the desingularization Z dictates that β = (d + f, d, d + e). (In the notation of Sec-

tion 2.2, β = d2 and α = d1 + d2). Using the above partition we get the desingularization

Z ⊂ Rep(Q,α)×Gr(d+ f, V1)×Gr(d, V3)×Gr(d+ e, V2) of OV given by

Z = {(R1, R2, R3) ∈ Gr(d+ f, V1)×Gr(d, V3)×Gr(d+ e, V2) |

((Rx)x∈Q0 , V (a), V (b)) ∈ Rep(Q, β)} (4.1.1)

or equivalently by

Z = {(Va, Vb) ∈ Hom(V1, V3)×Hom(V2, V3) | V (a)(R1) ⊂ R3 and V (b)(R2) ⊂ R3} (4.1.2)

We may visualize Z as being of the form

V1 −→ V3←− V2

R1 −→ R3←− R2

∪ ∪∪

with dimension vectors of the rows being α = (b + d + f, a + b + c + d, c + d + e) and

β = (d+ f, d, d+ e). Let Qx := Vx/Rx and γx = αx − βx so that dim Qx = γx.

Let Rx and Qx denote respectively the tautological subbundle and factorbundle of the

trivial vector bundle Vx×Gr(βx, Vx)
p−→ Gr(βx, Vx) for 1 ≤ x ≤ 3. By definition the fibers
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of a point Rx ∈ Gr(βx, Vx) with respect to vector bundles Rx and Qx are Rx and Qx

respectively. Identify the vector space Hom(V,W ) with V ∗⊗W . Under this identification

the desingularization Z can be viewed as being the total space of a vector bundle η which

is a subbundle of the trivial vector bundle

E = (V ∗1 ⊗ V3 ⊕ V ∗2 ⊗ V3)×
∏
x∈Q0

Gr(βx, Vx)→
∏
x∈Q0

Gr(βx, Vx).

For calculating the complex F• we consider the vector bundle which is dual to the

factorbundle E/η given by

ξ = R1 ⊗ Q∗3 ⊕ R2 ⊗ Q∗3 (4.1.3)

Let us denote
∏

x∈Q0
Gr(βx, Vx) by V. By Theorem 3.0.6 the terms of the free resolution

F• resolving the structure sheaf of Z are

Fi =
⊕
j≥0

Hj(V,

i+j∧
ξ)⊗ A[−i− j] (4.1.4)

Note that by Cauchy’s formula we have

t∧
ξ =

⊕
|λ|+|µ|=t

SλR1 ⊗ SµR2 ⊗ Sλ′Q∗3 ⊗ Sµ′Q∗3 (4.1.5)

To calculate Hj(V,
∧i+j ξ) we apply Bott’s algorithm to the weights

(0γ1 , λ), (0γ2 , µ), (−ν, 0β3)

for all Sν occuring in Sλ′ ⊗ Sµ′ . Suppose Nλ = uγ1, Nµ = vγ2 and Nν = wβ3. Explicitly -
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(0γ1 , λ) = (0, · · · , 0︸ ︷︷ ︸
γ1

, λ1, λ2, · · · ) uγ1 Bott−−−−−→
exchanges

[0γ1 , λ]

= (λ1 − γ1, λ2 − γ1, · · · , λu − γ1, u, · · · , u,︸ ︷︷ ︸
γ1

λu+1, · · · )

(0γ2 , µ) = (0, · · · , 0︸ ︷︷ ︸
γ2

, µ1, µ2, · · · ) vγ2 Bott−−−−−→
exchanges

[0γ2 , µ]

= (µ1 − γ2, µ2 − γ2, · · · , µv − γ2, v, · · · , v,︸ ︷︷ ︸
γ2

µv+1, · · · )

We write the third weight in its dual form -

(−ν, 0β3) = (· · · ,−ν2,−ν1, 0, · · · , 0︸ ︷︷ ︸
β3

)
wβ3 Bott−−−−−→
exchanges

[−ν, 0β3 ]

= (· · · ,−νw+1, w, · · · , w︸ ︷︷ ︸
β3

,−νw − β3, · · · , ν1 − β3)

Then the total number of exchanges N equals uγ1 + vγ2 + wβ3. We summarize this

in-

Proposition 4.1.1. The terms of the complex F• are given by -

Fi =

dimξ⊕
t=1

⊕
|λ|+|µ|=t

cνλ′,µ′(S[0γ1 ,λ]V1 ⊗ S[0γ2 ,µ]V2 ⊗ S[−ν,0β3 ]V
∗
3 )

where Sν ⊂ Sλ′ ⊗ Sµ′ and |λ|+ |µ| −N = i.

Since the term |λ|+ |µ| −N occurs often, we give it a name -

Definition 4.1.2. Let λ(a) be partition associated to arrow a ∈ Q1 and let

λ = (λ(a))a∈Q1 . Define

D(λ) =
∑
a∈Q1

|λ(a)| −N (4.1.6)
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In this chapter the tuple λ will be (λ, µ), that is we associate parition λ to arrow

a and µ to arrow b of Q : 1
a−→ 3

b←− 2. We denote by ν a partition occuring in the

Littlewood-Richardson product of λ and µ. From the earlier discussion it is clear that the

triple (u,w, v) depends on the partitions (λ, µ). We denote the triple (u,w, v) by u(λ).

From Proposition 4.1.1, it is clear that in order to calculate the terms Fi of the

resolution, we need to calculate D(λ). Due to the number of variables involved and

the peculiar form of exchanges required, the calculation of a closed formula for D(λ) is

not easy in general. Our key result is Proposition 4.1.4 which gives us a lower bound for

D(λ) in terms of the Euler form of quiver Q. First we prove a lemma which is an easy

exercise in counting boxes-

Lemma 4.1.3. Let λ be a Young tableau. Then for all a and b,

λ1 + λ2 + · · ·+ λa ≤ ab+ (λ′b+1 + · · ·+ λ′last).

Proof. We consider three cases:

Case (1) λ′b+1 = a. Then

λ1 + λ2 + · · ·λa = ab+ λ′b+1 + · · ·+ λ′last

Case (2) λ′b+1 > a. In this case λ′b+1, λ
′
b+2, · · ·λ′last contribute more boxes so that

λ1 + λ2 + · · ·+ λ′a ≤ ab+ λ′b+1 + · · ·+ λ′last

Case (3) λ′b+1 < a. Here the rectangle ab contributes more boxes, so that

λ1 + λ2 + · · ·+ λa ≤ ab+ λ′b+1 + · · ·+ λ′last
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By symmetry we also have for all a and b:

λ′1 + λ′2 + · · ·+ λ′a ≤ ab+ (λb+1 + · · ·+ λlast) (4.1.7)

Proposition 4.1.4. Let Q be the non-equioriented quiver A3. Let λ be a tuple of partitions

associated to arrows of Q and let u(λ) ∈ N|Q0| be a vector that depends on λ. If 〈, 〉 denotes

the Euler form on Q then

D(λ) ≥ 〈u(λ), u(λ)〉

Proof. Since [0γ1 , λ] = (λ1 − γ1, λ2 − γ1, · · · , λu − γ1, u
γ1 , λu+1, · · · ) is a non-increasing

sequence, we have that each of λ1 − γ1, . . . , λu − γ1 is greater than (or equal to) u, which

means each of λ1, . . . , λu is greater than (or equal to) u+γ1. Thus λ1+ · · ·+λu ≥ u2+uγ1.

Similarly µ1 + · · ·+µv ≥ v2 + vγ2 and ν1 + · · ·+ νw ≥ w2 +wβ3. By Lemma 4.1.3 we get-

w.u ≥ (λ′1 + · · ·+ λ′w)− (λu+1 + · · ·+ λlast)

w.v ≥ (µ′1 + · · ·+ µ′w)− (µv+1 + · · ·+ µlast)

So, w(u+ v) ≥ (λ′1 + · · ·+ λ′w + µ′1 + · · ·+ µ′w)−

(λu+1 + . . . λlast + µv+1 + · · ·+ µlast)

≥ ν1 + · · ·+ νw − (λu+1 + · · ·+ λlast + µv+1 + · · ·+ µlast)

thus ν1 + · · ·+ νw ≤ w(u+ v) + (λu+1 + · · ·+ λlast + µv+1 + · · ·+ µlast)
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Therefore

(u2 + uγ1) + (v2 + vγ2) + (w2 + wβ3) ≤ λ1 + · · ·+ λu + µ1 + · · ·+ µv

+ ν1 + · · ·+ νw

≤ λ1 + · · ·+ λu + µ1 + · · ·+ µv

+ w(u+ v) + λu+1 + · · ·+ λlast

+ µv+1 + · · ·+ µlast

= w(u+ v) + |λ|+ |µ|

So we have |λ|+ |µ| ≥ (u2 + uγ1) + (v2 + vγ2) + w(w + β3 − u− v)

= uγ1 + vγ2 + wβ3 + (u2 + v2 + w2 − uw − vw)

= uγ1 + γ2 + wβ3 + 〈(u,w, v), (u,w, v)〉

In their paper [BZ01], Bobinski and Zwara proved the normality of orbit closures for

Dynkin quivers of type An with arbitrary orientation. Using the above proposition we

can derive the normality of orbit closures in our case -

Corollary 4.1.5. In the case of quiver Q : 1 → 2 ← 3 the orbit closures are normal,

Cohen-Macaulay with rational singularities.

Proof. We have that 〈(u,w, v), (u,w, v)〉 ≥ 0 since it is the Euler form of a Dynkin quiver

Q. Then from Proposition 4.1.1 and Proposition 4.1.4, Fi = 0 for i < 0.

Also, 〈(u,w, v), (u,w, v)〉 = 0 if and only if u = v = w = 0 in which case λ = µ = ν = 0.

Thus F0 = 0. By Theorem 3.0.5, this implies that the orbit closure is normal with rational
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singularities.

Remark 4.1.6. For purposes of calculation, it is useful to record some simple observations

regarding the sizes of partitions λ, µ and ν. From Equation (4.1.5) it is clear that when

calculating
∧t ξ, we only need to consider those partitions λ, µ, ν such that λ is contained

in a dim Q3 × dim R1 rectangle, µ is contained in a dim Q3 × dim R2 rectangle and ν is

contained in a dim (R1 +R2)× dim Q3 rectangle. Thus the largest possible contributing

triples are (λ, µ, ν) = (γβ13 , γ
β2
3 , (β1 + β2)

γ3) (the notation αβ stands for the rectangular

partition (α, α, . . . , α) of length β).

Example 4.1.7. Let V = 010⊕ 011⊕ 110⊕ 111⊕ 100⊕ 001 and I be the defining ideal

of OV . Then α = (3, 4, 3) and β = (2, 1, 2). A = Sym(V1 ⊗ V ∗3 )⊕ Sym(V2 ⊗ V ∗3 ) and

dim ξ = dim(R1 ⊗Q3
∗ ⊕R2 ⊗Q3

∗) = 12. Hence we need to calculate ∧0ξ,∧1ξ, . . . ,∧12ξ.

Let ξ1 = R1 ⊗Q3
∗ and ξ2 = R2 ⊗Q3

∗

∧1ξ = (∧1ξ1 ⊗ ∧0ξ2)⊕ ∧0ξ1 ⊗ ∧1ξ2)

= [(S1R1 ⊗ S1Q3
∗)⊗ (S0R2 ⊗ S0Q3

∗)]⊕ [(S0R1 ⊗ S0Q3
∗)⊗ (S1R2 ⊗ S1Q3

∗)]

= [S1R1 ⊗ S0R2 ⊗ S1Q3
∗]⊕ [S0R1 ⊗ S1R2 ⊗ S1Q3

∗]

The weight associated to the first summand is (0, 1, 0; 0, 0, 0; 0, 0,−1, 0) and weight asso-

ciated to the second summand is (0, 0, 0; 0, 1, 0; 0, 0,−1, 0). Applying Bott’s algorithm we

see that none of these terms contribute to any of the Fi. For an example of a contributing

weight we calculate ∧3ξ. From Remark 4.1.6, we know that λ is contained in the rectangle

(32), µ is contained in (32) and ν is contained in (43).
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∧3ξ = (∧3ξ1 ⊗ ∧0ξ2)⊕ (∧2ξ1 ⊗ ∧1ξ2)⊕ (∧1ξ1 ⊗ ∧2ξ2)⊕ (∧0ξ1 ⊗ ∧3ξ2)

= [(S(2,1)R1 ⊗ S(0)R2 ⊗ S(2,1)Q3
∗)]⊕ [(S(3)R1 ⊗ S(0)R2 ⊗ S(1,1,1)Q3

∗)]

⊕ [S(2)R1 ⊗ S(1)R2 ⊗ S(2,1)Q3
∗)]⊕ [S(2)R1 ⊗ S(1)R2 ⊗ S(1,1,1)Q3

∗)]

⊕ [S(1,1)R1 ⊗ S(1)R2 ⊗ S(2,1)Q3
∗)]⊕ [S(1,1)R1 ⊗ S(1)R2 ⊗ S(3)Q3

∗)]

⊕ [S(1)R1 ⊗ S(2)R2 ⊗ S(1,1,1)Q3
∗)]⊕ [S(1)R1 ⊗ S(2)R2 ⊗ S(2,1)Q3

∗)]

⊕ [S(1)R1 ⊗ S(1,1)R2 ⊗ S(2,1)Q3
∗)]⊕ [S(1)R1 ⊗ S(1,1)R2 ⊗ S(3)Q3

∗)]

⊕ [(S(0)R1 ⊗ S(3)R2 ⊗ S(1,1,1)Q3
∗)]⊕ [(S(0)R1 ⊗ S(2,1)R2 ⊗ S(2,1)Q3

∗)]

The weights associated to the summands in that order are:

(0 2 1; 0 0 0; 0− 1− 2 0), (0 3 0; 0 0 0;−1− 1− 1 0), (0 2 0; 0 1 0; 0− 1− 2 0)

(0 2 0; 0 1 0;−1− 1− 1 0), (0 1 1; 0 1 0; 0− 1− 2 0), (0 1 1; 0 1 0; 0 0− 3 0)

(0 1 0; 0 2 0;−1− 1− 1 0), (0 1 0; 0 2 0; 0− 1− 2 0), (0 1 0; 0 1 1; 0− 1− 2 0)

(0 1 0; 0 1 1; 0 0− 3 0), (0 0 0; 0 3 0;−1− 1− 1 0) , (0 0 0; 0 2 1; 0− 1− 2 0)

Applying Bott exchanges to each weight we see that only the first and last summands

contribute the non-zero terms (∧3V1⊗∧3V ∗3 ⊗A(−3)) and (∧3V2⊗∧3V ∗3 ⊗A(−3)) to F1.

Continuing in this manner we get the resolution:
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A

↑

(∧3V1 ⊗ ∧3V ∗3 ⊗ A(−3))⊕ (∧3V2 ⊗ ∧3V ∗3 ⊗ A(−3))⊕ (∧2V1 ⊗ ∧2V2 ⊗ ∧4V ∗3 ⊗ A(−4))

↑

(S211V1 ⊗ ∧4V ∗3 ⊗ A(−4))⊕ (S211V2 ⊗ ∧4V ∗3 ⊗ A(−4))⊕

(∧3V1 ⊗ ∧2V ∗2 ⊗ S2111V
∗
3 ⊗ A(−5))⊕ (∧2V1 ⊗ ∧3V2 ⊗ S2111V

∗
3 ⊗ A(−5))⊕

∧3V1 ⊗ ∧3V2 ⊗ S222V
∗
3 ⊗ A(−6)

↑

(S211V1 ⊗ ∧3V2 ⊗ S2221V
∗
3 ⊗ A(−7))⊕ (∧3V1 ⊗ S211V2 ⊗ S2221V

∗
3 ⊗ A(−7))⊕

(∧2V1 ⊗ S222V
∗
2 ⊗ S2222V

∗
3 ⊗ A(−8))⊕ (S222V1 ⊗ ∧2V2 ⊗ S2222V

∗
3 ⊗ A(−8))⊕

∧3V1 ⊗ ∧3V2 ⊗ S3111V
∗
3 ⊗ A(−6)

↑

(S211V1 ⊗ S211V2 ⊗ S2222V
∗
3 ⊗ A(−8))⊕ (S222V1 ⊗ ∧3V2 ⊗ S3222V

∗
3 ⊗ A(−9))⊕

(∧3V1 ⊗ S222V2 ⊗ S3222V
∗
3 ⊗ A(−9))

↑

(S222V1 ⊗ S222V2 ⊗ S3333V
∗
3 ⊗ A(−12))
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4.2 Minimal generators of the defining ideal

Let V ∈ Rep(Q, d), V = a(010)⊕ b(011)⊕ c(110)⊕ d(111)⊕ e(100)⊕ f(001). Then

rank φ = b+ d, rank ψ = c+ d, rank (φ|ψ) = b+ c+ d

We will denote these ranks by p, q, r respectively. Hence N = ub+ vc+ wd.

We consider orbits admitting a Reineke desingularization given by the partition in

Figure 4.2. The following result is the main theorem of this section. It describes the first

term F1 of the resolution F•. In particular, it says that the summands of F1 are obtained

by contributions from
∧rank(φ)+1 ξ,

∧rank(ψ)+1 ξ and
∧rank(φ|ψ)+1 ξ. As a result we will

have that the generators of the defining ideal are determinantal, in the sense that they

are maximal minors of φ, ψ and φ|ψ.

Theorem 4.2.1. F1 = Hp(V,
∧p+1 ξ)⊕Hq(V,

∧q+1 ξ)⊕Hr(V,
∧r+1 ξ).

Proof. From Proposition 4.1.1, we have that

F1 =

dimξ⊕
t=1

⊕
|λ|+|µ|=t

cνλ′,µ′(S[0b,λ]V1 ⊗ S[0c,µ]V2 ⊗ S[−ν,0d]V
∗
3 )

where Sν ⊂ Sλ′ ⊗ Sµ′ and D(λ) = 1. Also by Proposition 4.1.4,

D(λ) ≥ 〈(u,w, v), (u,w, v)〉

i.e. 1 ≥ 〈(u,w, v), (u,w, v)〉
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But Q is Dynkin, so the Euler form EQ(u,w, v) = 〈(u,w, v), (u,w, v)〉 > 0, so

〈(u,w, v), (u,w, v)〉 = 1

By a theorem of Gabriel [Gab75], there is a one-to-one correspondence between the roots

of the quadratic EQ = 1 and dimension vectors of indecomposables in mod KQ when KQ

is representation-finite. Thus, (u,w, v) is one of (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)

and (1, 1, 1). We analyze these triples to prove our proposition. Recall that the weights

of
∧i ξ are of the form

(0b, λ), (0c, µ), (−ν, 0d)

where |λ|+ |µ| = i.

(1) (u,w, v) = (1, 0, 0): in this case N = b, so |λ| + |µ| = b + 1. u = 1 implies that

λ = (b + 1, 0 · · · , 0), so µ = 0. This implies ν = λ′, but w = 0, so we will get a

contributing triple only when d = 0. In that case p = γ1 and

Hp(V,

p+1∧
ξ) = ∧p+1V1 ⊗ ∧p+1V ∗3

is the only contribution to F1.

(2) (u,w, v) = (0, 1, 0): here N = d. So |λ| + |µ| = |ν| = d + 1. Also w = 1 implies

ν must be (d + 1, 0, · · · , 0). So a contributing triple occurs only when b = c = 0.

Then r = d and we get contributing triples (1k; 1l; d+ 1) where k+ l = d+ 1. The

contribution to F1 is

Hr(V,
r+1∧

ξ) = ∧kV1 ⊗ ∧lV2 ⊗ ∧r+1V ∗3
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(3) (u,w, v) = (0, 0, 1): this case is analogous to the first one. A contributing triple

occurs only when d = 0 in which case the contribution to F1 is

Hq(V,

q+1∧
ξ) = ∧q+1V2 ⊗ ∧q+1V ∗3 .

(4) (u,w, v) = (1, 1, 0): this implies N = b+ d = p. D(λ) = 1 implies |λ|+ |µ| −N = 1,

so |λ| + |µ| = |ν| = b + d + 1. u = 1 implies λ is of the form (b + 1, 1k, 0, . . . ),

similarly w = 1 implies ν is of the form (d + 1, 1l, 0, . . . ) (thus both λ and ν are

hooks). Then |ν| = b+ d+ 1 implies l = b.

Since v = 0 we know that there are zero exchanges for the weight (0c, µ). This can

happen if either µ = 0 or c = 0. If µ = 0, then ν = λ′ and

Hp(V,

p+1∧
ξ) = S[0b,λ]V1 ⊗ S[−ν,0d]V

∗
3

= ∧p+1V1 ⊗ ∧p+1V ∗3

If c = 0, then µ = ν \ λ = (1d−k). In this case

Hp(V,

p+1∧
ξ) = S[0b,λ]V1 ⊗ SµV2 ⊗ S[−ν,0d]V

∗
3

= ∧b+k+1V1 ⊗ ∧d−kV2 ⊗ ∧p+1V ∗3

(5) (u,w, v) = (0, 1, 1): this case is analogous to the previous one. u = 0 implies either
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λ = 0 or b = 0. If λ = 0, then ν = µ′ and

Hq(V,

q+1∧
ξ) = S[0c,µ]V2 ⊗ S[−ν,0d]V

∗
3

= ∧q+1V2 ⊗ ∧q+1V ∗3

If b = 0, then λ = ν \ µ = (1d−k). In this case

Hq(V,

q+1∧
ξ) = SλV1 ⊗ S[0c,µ]V2 ⊗ S[−ν,0d]V

∗
3

= ∧d−kV1 ⊗ ∧c+k+1V2 ⊗ ∧q+1V ∗3

(6) (u,w, v) = (1, 1, 1) in this case N = b+ c+ d = r. λ and µ are hooks of the form:

λ = (b+ 1, 1k, 0, . . . ), µ = (c+ 1, 1l, 0, . . . ).

Since ν is such that Sν ⊂ Sλ′ ⊗ Sµ′ , ν is also a hook of the form (d + 1, 1m, 0, . . . ).

Since |λ|+ |µ| = |ν| = b+ c+d+ 1, we must have k+ l = d−1 and m = b+ c. Thus

Hr(V,
r+1∧

ξ) = S[0b,λ]V1 ⊗ S[0c,µ]V2 ⊗ S[−ν,0d]V
∗
3

=
⊕

k+l=d−1

∧b+k+1V1 ⊗ ∧c+l+1V2 ⊗ ∧b+c+d+1V ∗3

By Cauchy’s formula, this term is a direct summand of
∧r+1([V1 ⊕ V2]⊗ V ∗3 ).

Corollary 4.2.2. Let rank (φ) = p, rank (ψ) = q, rank (φ + ψ) = r. The minimal

generators of the defining ideal are determinantal: (p + 1) × (p + 1) minors of φ, the

(q + 1)× (q + 1) minors of ψ and the (r + 1)× (r + 1) minors of φ|ψ, taken by choosing
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b+ k + 1 columns of φ and c+ l + 1 columns of ψ, where k + l = d− 1.

Proof. The defining ideal of the orbit closure OV is generated by the image of the map

F1
δ−→ A. By Theorem 4.2.1, the image of the differential map δ is generated by (p+1)×

(p+1)-minors of the matrix corresponding to the linear map φ, (q+1)× (q+1)-minors of

the matrix corresponding to the linear map ψ and (r + 1)× (r + 1)-minors of the matrix

corresponding to the linear map φ|ψ.

In Example 4.1.7, we found

F1 = (∧3V1⊗∧3V ∗3 ⊗A(−3))⊕ (∧3V2⊗∧3V ∗3 ⊗A(−3))⊕ (∧2V1⊗∧2V2⊗∧4V ∗3 ⊗A(−7))

Fixing a basis for vector spaces V1, V2 and V3, the minimal generators of the defining

ideal are 3 × 3 minors of the 4 × 3 matrices φ and ψ and 4 × 4 minors of the map

φ|ψ : V1 ⊕ V2 → V3, obtained by choosing 2 columns of φ and 2 columns of ψ.

4.3 Ftop and classification of Gorenstein orbits

Let Q be a Dynkin quiver. We denote the last term of the resolution F• by Ftop. Let

t = dim ξ, where ξ is the vector bundle defined in Equation (4.1.3). The top exterior

power of ξ(a) contributes the term

S[0d1(ta),d1(ha)d2(ta),··· ,(d1(ha)+···+ds−1(ha))ds(ta)]
(ta) (4.3.1)

⊗S[(−d2(ta)−···−ds(ta))d1(ha),··· ,−ds(ta)ds−1(ha),0ds(ha)](ha)∗
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Thus the contribution of the top exterior power of ξ is given by

⊗
x∈Q0

S(k1(x)d1(x),··· ,ks(x)ds(x))(x) (4.3.2)

where

kp(x) =
∑

a∈Q1;ta=x

∑
u<p

du(ha)−
∑

a∈Q1;ha=x

∑
u>p

du(ta) (4.3.3)

First, we give a sufficient condition for the orbit closure OV to be Gorenstein in case

of any Dynkin quiver Q. The condition that for every x ∈ Q0, the number

kp(x)−
∑
u<p

du(x) +
∑
u>p

du(x) (4.3.4)

is independent of p (p = 1, 2, · · · , s), is equivalent to the the condition that
∧t ξ, the

top exterior power of ξ, contributes a trivial representation to Ftop. We show that the

latter condition, together with normality, implies that the corresponding orbit closure is

Gorenstein. First we show that the condition (4.3.4) is equivalent to the property that

the τ -orbits in the Auslander-Reiten quiver are constant-

Lemma 4.3.1. Let τ denote the Auslander-Reiten translate and suppose d(x) = (du(x))

(for u = 1, 2, · · · , s) are dimensions of the flag at vertex x in the desingularization Z.

Then

〈ex, dp(x)〉 = −〈dp+1(x), ex〉

for all x ∈ Q0 and p = 1, 2, · · · , s − 1, where ex is the dimension vector of the simple

representation supported at x.
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Proof. Condition (4.3.4) translates to the equations-

kp+1(x)− kp(x) = dp(x) + dp+1(x) (4.3.5)

for x ∈ Q0 and p = 1, 2, · · · , s− 1. This is equivalent to-

∑
a∈Q1;ta=x

dt(ha) +
∑

a∈Q1;ha=x

dp+1(ta) = dp+1(x) + dp(x) (4.3.6)

for all x ∈ Q0 and p = 1, 2, · · · , s − 1. These conditions can be expressed in terms of

Euler form as follows-

〈ex, dp〉 = dp(x)−
∑
a∈Q1
ta=x

dp(ha)

=
∑
a∈Q1
ha=x

dp+1(ta)− dp+1(x)

= −〈dp+1, ex〉

Thus,

〈ex, dp〉 = −〈dp+1, ex〉

where ex is the dimension vector of the simple representation supported at x.

Lemma 4.3.2. Let m = dim V and t = dim ξ. Then

codim OV = t−m
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Proof.

codim OV = dim X − dim OV

= dim X − dim Z

= dim X − (dim X +m− t)

= t−m

Lemma 4.3.3. Suppose
∧t ξ contributes a trivial representation to Ft−m. Then the res-

olution F• is self-dual. In particular, Ft−m ∼= F∗0.

Proof. If Hm(V,
∧t ξ) is a trivial representation then

∧t ξ ∼= ωV, where ωV denotes the

canonical sheaf on V. This implies that ωV ⊗
∧t ξ∗ ∼=

∧0 ξ ∼= K. Then for 0 ≤ i ≤ m,

Ft−m−i =
⊕
j≥0

Hm−j(V,

t−i−j∧
ξ)

∼=
⊕
j≥0

Hj(V, ωV ⊗
t−i−j∧

ξ∗)∗ (by Serre duality)

∼=
⊕
j≥0

Hj(V, ωV ⊗
t∧
ξ∗ ⊗

i+j∧
ξ)∗

∼=
⊕
j≥0

Hj(V,

i+j∧
ξ)∗

= F∗i

Theorem 4.3.4. Assume that for each p = 1, 2, · · · , s − 1 we have dp+1 = τ+dp. Then

the complex F• is self-dual. If the incidence variety comes from Reineke desingularization

and the corresponding orbit closure is normal with rational singularities, then it is also
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Gorenstein.

Proof. If the τ -orbits of an AR quiver are constant then by Lemma 4.3.1,
∧t ξ contributes

a trivial representation to Ft−m. Then applying Lemma 4.3.3 we get that Ft−m ∼= F∗0
∼= A∗,

therefore dim Ft−m = 1.

In particular, for our case of non-equioriented A3 this says that the orbits with mul-

tiplicities satisfying a = d, b = e and c = f are Gorenstein.

Next, we investigate necessary conditions for for the orbit closure OV to be Gorenstein

in case of non-equioriented A3. Recall that for our case of non-equioriented A3, we have

desingularization-

V1 −→ V3←− V2

R1 −→ R3←− R2

∪ ∪∪

As before, let V = a(010)⊕ b(011)⊕ c(110)⊕d(111)⊕e(100)⊕f(001) be a representation

of A3. Then

d1 = (b, a+ b+ c, c); d2 = (d+ f, d, d+ e)

From (4.3.2) the weights for
∧t ξ are:

(0b, (a+ b+ c)d+f ), (0c, (a+ b+ c)d+e), ((−2d− e− f)a+b+c, 0d).

For the case of non-equioriented A3, we investigate the following question: in what cases

does
∧t ξ contribute a non-zero representation? To which term Fi does

∧t ξ contribute?

First we show that a contribution from
∧t ξ always goes to Ft−m.

Lemma 4.3.5. If the weight of the
∧t ξ gives a non-zero partition after Bott exchanges,

then the corresponding representation is a summand of Ft−m.
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Proof. It is enough to show that D(λ) = codim OV for λ = ((a + b + c)d+f ) and µ =

((a+ b+ c)d+e). We apply Bott’s algorithm to each weight to get:

[0b, (a+ b+ c)d+f ] = ((a+ c)d+f , (d+ f)b) after b(d+ f) Bott exchanges,

[0c, (a+ b+ c)d+e] = ((a+ b)d+e, (d+ e)c) after c(d+ e) Bott exchanges,

[(−2d−e−f)a+b+c, 0d] = ((−a−b−c)d, (−d−e−f)a+b+c) after d(a+b+c) Bott exchanges.

D(λ) = [(d+ f)(a+ b+ c)] + [(d+ e)(a+ b+ c)]

− [b(d+ f) + c(d+ e) + d(a+ b+ c)]

= ad+ ae+ af + be+ cf

= codim OV

= t−m

Next we list the cases in which
∧t ξ contributes a non-zero term. Observe that a

contribution will occur whenever the Bott exchanges give a non-increasing sequence for

every term of

(0b, (a+ b+ c)d+f ), (0c, (a+ b+ c)d+e), ((−2d− e− f)a+b+c, 0d)

Also, note that if any of b, c or d are zero, then there are no exchanges for the corresponding

term in the weight. We base our cases on this observation.

Proposition 4.3.6.
∧t ξ contributes to Ft−m in the following cases when the correspond-
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ing conditions are satisfied:

Cases Conditions

b = 0, c = 0, d = 0 no condition

b 6= 0, c = 0, d = 0 a+ c ≥ d+ f

b = 0, c 6= 0, d = 0 a+ b ≥ d+ e

b = 0, c = 0, d 6= 0 d+ e+ f ≥ a+ b+ c

b = 0, c 6= 0, d 6= 0 a+ b ≥ d+ e , d+ e+ f ≥ a+ b+ c

b 6= 0, c = 0, d 6= 0 a+ c ≥ d+ f , d+ e+ f ≥ a+ b+ c

b 6= 0, c 6= 0, d = 0 a+ c ≥ d+ f , a+ b ≥ d+ e

b 6= 0, c 6= 0, d 6= 0 a+ c ≥ d+ f , a+ b ≥ d+ e, d+ e+ f ≥ a+ b+ c

Table 4.1: Cases when
∧t ξ contributes to Ft−m

For the cases listed above, we calculate the representation that
∧t ξ contributes to

Ft−m:

Case Weight of
∧t ξ Corresponding term in Ft−m

b = 0, c = 0, d = 0 (af ; ae; (−e− f)a) S(af )V1 ⊗ S(ae)V2

⊗S((−e−f)a)V
∗
3

b 6= 0, c = 0, d = 0 (0b, (a+ b)f ; (a+ b)e; S(af ,fb)V1 ⊗ S((a+b)e)V2

(−e− f)a+b) ⊗S((−e−f)a+b)V
∗
3

b = 0, c 6= 0, d = 0 ((a+ c)f ; 0c, (a+ c)e; S((a+c)f )V1 ⊗ S(ae,ec)V2

(−e− f)a+c) ⊗S((−e−f)a+c)V
∗
3

b = 0, c = 0, d 6= 0 (ad+f ; ad+e; S(ad+f )V1 ⊗ S(ad+e)V2

(−2d− e− f)a, 0d) ⊗S(−ad,(−d−e−f)a)V
∗
3

Continued on next page
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Case Weight of
∧t ξ Corresponding term in Ft−m

b = 0, c 6= 0, d 6= 0 ((a+ c)d+f ; 0c, (a+ c)d+e; S((a+c)d+f )V1 ⊗ S(ad+e,(d+e)c)V2

(−2d− e− f)a+c, 0d) ⊗S((−a−c)d,(−d−e−f)a+c)V
∗
3

b 6= 0, c = 0, d 6= 0 (0b, (a+ b)d+f ; (a+ b)d+e; S(ad+f ,(d+f)b)V1 ⊗ S((a+b)d+e)V2

(−2d− e− f)a+b, 0d) ⊗S((−a−b)d,(−d−e−f)a+b)V
∗
3

b 6= 0, c 6= 0, d = 0 (0b, (a+ b+ c)f ; S((a+c)f ,fb)V1 ⊗ S((a+b)e,ec)V2

0c, (a+ b+ c)e; ⊗S((−e−f)a+b+c)V
∗
3

(−e− f)a+b+c)

b 6= 0, c 6= 0, d 6= 0 (0b, (a+ b+ c)d+f ; S((a+c)d+f ,(d+f)b)V1

0c, (a+ b+ c)d+e; ⊗S((a+b)d+e,(d+e)c)V2

(−2d− e− f)a+b+c, 0d) ⊗S((−a−b−c)d,(−d−e−f)a+b+c)V
∗
3

Table 4.2: Term contributed by
∧t ξ

Since OV is Cohen-Macaulay by Corollary 4.1.5, it is Gorenstein if and only if Ft−m is

1-dimensional. It is known that determinantal varieties are Gorenstein if and only if the

top term in their Lascoux resolution is 1-dimensional. So we investigate only those orbit

closures which are not determinantal varieties arising from 1 map. We list such cases after

Theorem 4.3.7.

Theorem 4.3.7. A non-determinantal orbit closure OV is Gorenstein if and only if V is

in an orbit with multiplicities satisfying one of the following conditions:

(1) a = d, b = e, c = f

(2) a = d+ e, b = 0, c = f
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(3) a = d+ e, b = f = 0

(4) a = d+ f , c = 0, b = e

(5) a = d+ f , c = e = 0

Proof. Part (1) follows from Theorem 4.3.4 and Table 4.2. For instance, in the case

b 6= 0, c 6= 0, d 6= 0 the term Hm(V,
∧t ξ) is 1-dimensional if and only if a + c = d + f ,

a+ b = d+ e and a+ b+ c = d+ e+ f that is if and only if a = d, b = e and c = f . For

the remaining parts, note that (2) is symmetric to (4) and (3) is symmetric to (5), so it

suffices to prove (2) and (3).

For part (2), note that the weight of
∧t ξ is

((d+ e+ c)d+c; 0c, (d+ e+ c)d+e; (−2d− e− c)d+e+c, 0d)

Calculating D(λ) shows that Hm(V,
∧t ξ) is non-zero and dim Hm(V,

∧t ξ) = 1. So

by Lemma 4.3.3, the complex F• is self-dual in this case. F0 = A implies Ft−m is 1-

dimensional, hence Gorenstein.

Finally, to prove part (3) we show combinatorially that there exists a unique triple

λ = (λ, µ, ν) for which D(λ) = t−m. Notice that for this case we have

t−m = (d+ e+ c)(2d+ e)− d(d+ e+ c)− c(d+ e) = (d+ e)2.
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Claim 1: D((d+ e)d; (d+ e+ c)d+e; (2d+ e)d+e, (d+ e)c) = t−m.

D((d+ e)d; (d+ e+ c)d+e; (2d+ e)d+e, (d+ e)c) = (d+ e)(2d+ e+ c)

− c(d+ e)− d(d+ e)

= (d+ e)2

Also note that ((2d+e)d+e, (d+e)c) is the unique term in the Littlewood-Richardson

product of ((d+ e)d) and ((d+ e+ c)d+e) which satisfies conditions ...

Claim 2: If λ̂ = (λ̂, µ̂, ν̂) is any other contributing triple, then D(λ̂) < t−m.

Observe that ν has 2 corner boxes either of which can be removed to obtain a

smaller ν̂. Suppose we remove the first corner box. This corresponds to removing

one corner box from µ. The next triple contributing a 1-dimensional representation

is (λ̂, µ̂, ν̂) = ((d+e−1)d; (d+e+c)d+e−1, d+e−1; (2d+e−1)d+e−1, (d+e−1)c+1)

with number of exchanges decreased by c+ d. Then

D(λ̂) = (d+ e− 1)(2d+ e+ c− 1)− c(d+ e− 1) + d(d+ e− 1)

= (d+ e− 1)2 < t−m

On the other hand if we remove the second corner box, this corresponds to removing

a box from µ and the next contributing triple is again ((d+e−1)d; (d+e+c)d+e−1, d+

e−1; (2d+e)d+e−1, (d+e−1)c+1). Thus, removing boxes from either corner results

in a triple with D(λ̂) < t−m.

Thus, the ((d+e)d; (d+e+c)d+e; (2d+e)d+e, (d+e)c) is the unique triple that contributes to
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Ft−m; applying Bott exchanges to the corresponding weight we get that the contribution

is a trivial representation. By Lemma 4.3.3 and the fact that OV is Cohen-Macaulay, we

are done.

Finally, we give a list of orbits that can occur if the orbit closure is Gorenstein.

These are the determinantal orbits mentioned earlier. Since it is enough to specify the

multiplicities a, b, c, d, e, f to specify an orbit, we present the orbits in the shape of the

AR quiver (Figure 4.1) with multiplicities in place of indecomposables.
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We present the analysis of a few cases here and the rest are similar. The orbit

0

b

f = a

a

0

e

Figure 4.3: Example of determinantal orbit closure

corresponds to the representation V = a(010)⊕b(011)⊕e(100)⊕a(001). The dimension

vector of V is d = (e, a+ b, a+ b) so that V is a representation of the form

Ke φ−−−−→
rank=b

Ka+b ψ←−−−−
rank=0

Ka+b. Thus OV is the determinantal variety generated by (b +

1)× (b+ 1) minors of φ.

For another example, consider the orbit in Figure 4.4. A representation in this orbit

d

0

f

a = d + e + f

0

e

Figure 4.4: Example of determinantal orbit closure

is given by W = (d+ e+ f)(010)⊕ d(111)⊕ e(100)⊕ f(001) and has the form

Kd+f φ−−−−→
rank=d

K2d+e+f ψ←−−−−
rank=d

Kd+e. OW is the determinantal variety generated by (d +

1)×(d+1) minors of the (2d+e+f)×(2d+e+f) minors of the matrix φ|ψ : W1⊕W2 → W3.

As a final example, consider the following orbit. A representation in the orbit of Figure

4.5 has the form Ka+b+c φ−−−−→
rank=b

Ka+b+c ψ←−−−−
rank=c

Kc. The corresponding orbit closure is a

determinantal variety generated by (b+ 1)× (b+ 1) minors of φ.
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0

b

f = a + c

a

c

0

Figure 4.5: Example of determinantal orbit closure



Chapter 5

Source-sink quivers

In this chapter we calculate resolutions for another class of Dynkin quivers which we term

as ‘source-sink quivers’. These are quivers with every vertex being either a source or a

sink. For such Dynkin quivers we can generalize the lower bound for D(λ) obtained in

Proposition 4.1.4. This enables us to use the geometric technique to calculate resolu-

tions for orbit closures which admit a 1-step desingularization. We use this resolution to

conclude the normality of such orbit closures.

The first section contains the main results of the chapter. We provide some examples

of the calculation in the second section.

The contents of this chapter have appeared in [Sut11a].

5.1 Main results

To prove the main theorem (Theorem 5.1.3) we need a couple of lemmas about Young

tableaux. This first of this is proved in Chapter 4 and we only recall the statement here:

66
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Lemma 5.1.1. Let λ be a Young tableau. Then for all a and b,

λ1 + λ2 + · · ·+ λa ≤ ab+ (λ′b+1 + · · ·+ λ′last).

The next lemma is one of the well known Horn-type inequalities for triples of partitions

[Ful98].

Lemma 5.1.2. Suppose ν is one of the partitions occuring in Littlewood-Richardson prod-

uct of λ and µ. Then

ν1 + ν2 + · · ·+ νk ≤ (λ1 + λ2 + · · ·+ λk) + (µ1 + µ2 + · · ·+ µk).

Let Q = (Q0, Q1) be an source-sink Dynkin quiver. Fix a representation V of Q.

Let (λ(a))a∈Q1 be a |Q1|-tuple of partitions. Consider the variety Z obtained as a 1-step

desingularization of OV . We have as before the vector bundle ξ defined by

ξ =
⊕
a∈Q1

Rta ⊗ Q∗ha (5.1.1)

so that

t∧
ξ =

⊕
∑
a∈Q1

ka=t

ka∧
(Rta ⊗ Q∗ha)

=
⊕

∑
a∈Q1

|λ(a)|=t

[⊗
a∈Q1

Sλ(a)Rta ⊗ Sλ(a)′Q∗ha

]
(by Cauchy’s formula)

=
⊕

∑
a∈Q1

|λ(a)|=t

⊗
x∈Q0

 ⊗
a∈Q1|ta=x

Sλ(a)Rx ⊗
⊗

a∈Q1|ha=x

Sλ(a)′Q
∗
x

 (5.1.2)
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When calculating the resolution F• of q∗(OZ) we are concerned with the difference

D(λ) :=
∑
a∈Q1

|λ(a)| −N

where N is the total number of Bott exchanges required in the process of obtaining a

partition from the weights described below. Our main theorem is an inequality involving

the above difference and the Euler form of Q. It is a generalization of the inequality

obtained for D(λ) in Proposition 4.1.4.

Let Q′ ⊂ Q0 be the set of all source vertices and Q′′ ⊂ Q0 be the set of all sink

vertices. Let λ(a) be a non-increasing sequence associated to every arrow a ∈ Q1. With

this notation, the exterior power
∧t ξ in Equation (5.1.2) can be viewed as

t∧
ξ =

⊕
∑
a∈Q1

|λ(a)|=t

(
⊗
x∈Q′

⊗
a∈Q1|ta=x

Sλ(a)Rx)⊗ (
⊗
x∈Q′′

⊗
a∈Q1|ha=x

Sλ(a)′Q
∗
x)

 (5.1.3)

Thus we have one summand for every |Q1|-tuple of non-increasing sequences (λ(a))a∈Q1 .

It will be useful to let this tuple of partitions also stand for the summand it corresponds

to. So we write
t∧
ξ =

⊕
|λ|=t

t∧
ξ(λ)

where
t∧
ξ(λ) = (

⊗
x∈Q′

⊗
a∈Q1|ta=x

Sλ(a)Rx)⊗ (
⊗
x∈Q′′

⊗
a∈Q1|ha=x

Sλ(a)′Q
∗
x) (5.1.4)

If x is a vertex with more than one incoming or outgoing vertices then the correspond-

ing term in the right hand side of Equation (5.1.4) is calculated using the Littlewood-

Richardson rule for tensor products. Recall that we use the notation λ(a1a2) to denote
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a Young tableau occuring in the Littlewood-Richardson product of Young tableaux λ(a1)

and λ(a2).

To calculate the resolution F• we associate a weight to each summand of
∧t ξ(λ).

Each summand consists of tensor products of terms of the form Sλ(−)Rx (for x ∈ Q′)

and Sλ(−)Q
∗
x (for x ∈ Q′′). If x ∈ Q′ the associated sequence is (0γx , λ(a1a2 . . . ak)) where

a1, a2, · · · ak are all the outgoing arrows at x; if x ∈ Q′′, the sequence is

(−λ(b1b2 . . . bl)
′, 0βx) where b1, b2, · · · bl are all the incoming arrows at x. We can now

state the main theorem.

Theorem 5.1.3. Let Q be a Dynkin quiver with source-sink orientation and let 〈, 〉 be

the Euler form on Q. Let λ be a tuple of partitions associated to the arrows of Q and

u(λ) ∈ N|Q0| be a vector associated to λ . Then

D(λ) ≥ 〈u(λ), u(λ)〉.

Proof. To calculate D(λ) we apply Bott’s algorithm to the weights described above and

count the total number of exchanges N . There is one weight associated to every vertex;

let Nx denote the number of Bott exchanges at vertex x.

If x is a source, the weight at x is of the form (0γx , λ(Ix)) where Ix = ai1ai2 . . . aik

such that ai1 , ai2 , . . . aik are all the arrows incident at x. Then Nx = γxux where ux is the

largest number such that λ(I)ux − γx ≥ ux.

Similarly, if y is a sink, then weight at y is of the form (−λ(Jy)
′, 0βy), where Jy =

bj1bj2 . . . bjl such that bj1 , bj2 , . . . bjl are all the arrows incident at y. In this case Ny = βyuy
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where uy is the largest number such that −λ(J)uy + βy ≤ uy. Thus

N =
∑
x∈Q′

Nx +
∑
y∈Q′′

Ny =
∑
x∈Q′

γxux +
∑
y∈Q′′

βyuy (5.1.5)

Note that if ux is the largest number such that λ(I)ux − γx ≥ ux then

λ(Ix)1 ≥ λ(Ix)2 ≥ · · ·λ(Ix)ux ≥ γx + ux

implies

λ(Ix)1 + λ(Ix)2 + · · ·+ λ(Ix)ux ≥ ux(γx + ux) = u2x + γxux (5.1.6)

For similar reasons we have

λ(Jy)
′
1 + λ(Jy)

′
2 + · · ·+ λ(Jy)

′
uy ≥ uy(βy + uy) = u2y + βyuy (5.1.7)

On the other hand we have by Lemma 5.1.2 that

λ(Ix)1 + · · ·λ(Ix)ux ≤
∑
aik
x−→

(λ(aik)1 + · · ·+ λ(aik)ux)

Combining this with Inequality (5.1.6) gives

∑
aik
x−→

(λ(aik)1 + · · ·+ λ(aik)ux) ≥ u2x + γxux (5.1.8)

for every pair (x, Ix) with x ∈ Q′.
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Similarly

λ(Jy)
′
1 + · · ·+ λ(Jy)

′
uy ≤

∑
bjk−→y

(λ(bjk)1 + · · ·+ λ(bjk)uy)

together with Inequality (5.1.7) implies

∑
bjk−→y

(λ(bjk)1 + · · ·+ λ(bjk)uy) ≥ u2y + βyuy (5.1.9)

for every pair (y, Jy) with y ∈ Q′′.

Using Lemma 5.1.1 we get a further upper bound on the right hand side terms of

Inequality (5.1.9): if bjk is an arrow from xk to y then

uxkuy + λ(bjk)uxk+1 + λ(bjk)uxk+2 + · · ·+ λ(bjk)last ≥ λ(bjk)
′
1 + · · ·+ λ(bjk)

′
uy

for every k = 1, 2, . . . , l. So for every pair (y, Jy) we get inequalities

∑
bjk
xk→y

(uxkuy + λ(bjk)uxk+1 + λ(bjk)uxk+2 + · · ·+ λ(bjk)last) ≥ u2y + βyuy (5.1.10)

Adding the inequalities in (5.1.8) and (5.1.10) for all pairs (x, Ix)x∈Q′ and (y, Iy)y∈Q′′ ,

we get

∑
a∈Q1

|λ(a)|+
∑
a

x→y

uxuy ≥
∑
x∈Q′

(u2x + γxux) +
∑
y∈Q′′

(u2y + βyuy) =
∑
x∈Q0

u2x −N (5.1.11)
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which means ∑
a∈Q1

|λ(a)| −N ≥
∑
x∈Q0

u2x −
∑
a

x→y

uxuy = 〈u(λ), u(λ)〉 (5.1.12)

As a result, we can prove the normality of a class of orbit closures arising from source-

sink Dynkin quivers.

Corollary 5.1.4. Let Q be a Dynkin quiver with source-sink orientation, V be a repre-

sentation of Q such that the orbit closure OV admits a 1-step desingularization Z. Then

OV is normal and has rational singularities.

Proof. Q is Dynkin implies 〈u(λ), u(λ)〉 > 0 for all λ. Theorem 5.1.3 implies that the

terms Fi of the resolution F• are zero for i < 0 and F0 = A. By Theorem 3.0.5 it follows

that the orbit closure is normal and has rational singularities.

The following corollary concerns orbit closures arising from extended Dynkin quivers.

Corollary 5.1.5. Let Q be an extended Dynkin quiver with source-sink orientation. If V

is a representation of Q such that the orbit closure OV admits a 1-step desingularization

Z then F• is a minimal free resolution of the normalization of OV .

Proof. If Q is extended Dynkin, then 〈u(λ), u(λ)〉 ≥ 0 for all λ. This implies Fi = 0 for

i < 0. The result then follows from Theorem 3.0.5.

5.2 Examples

Example 5.2.1. Consider Q = A4 with orientation as in the figure below. Figure 1.1

shows the Auslander-Reiten quiver of Q. Let V be the direct sum of indecomposables

with dimension vectors (1, 0, 0, 0), (1, 1, 1, 0), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 0), (1, 1, 1, 1)
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1 2 3 4λ µ ν

Figure 5.1: A4

and (1, 1, 0, 0). V admits a 1-step desingularization with dimension vectors α = (4, 4, 5, 2)

and β = (2, 3, 2, 1). The coordinate ring of the affine space Rep(Q, (4, 4, 5, 2)) is

A = Sym(V2 ⊗ V ∗1 )⊕ Sym(V2 ⊗ V ∗3 )⊕ Sym(V4 ⊗ V ∗3 )

Let Ri denote the subspace of Vi of dimension βi and let Qi := Vi/Ri. Then

ξ = R2 ⊗Q∗1 ⊕R2 ⊗Q∗3 ⊕R4 ⊗Q∗3

t∧
ξ =

⊕
∑3
i=1 |λ(i)|=t

Sλ(1)′Q
∗
1 ⊗ Sλ(12)R2 ⊗ Sλ(23)′Q∗3 ⊗ Sλ(3)R4

The resolution of OV is-
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A

↑

(∧4V2 ⊗ ∧4V ∗3 ⊗ A(−4))⊕ (∧4V ∗1 ⊗ ∧4V2 ⊗ A(−4))

(∧3V2 ⊗ ∧5V ∗3 ⊗ ∧2V4 ⊗ A(−5)⊕ (∧4V ∗1 ⊗ S2221V2 ⊗ ∧5V ∗3 ⊗ ∧2V4 ⊗ A(−5))

↑

(S2111V2 ⊗ ∧5V ∗3 ⊗ A(−5))⊕ (∧4V ∗1 ⊗ S2222V2 ⊗ ∧4V ∗3 ⊗ A(−8))

(∧4V ∗1 ⊗ S3222V2 ⊗ ∧5V ∗3 ⊗ A(−9))

↑

(∧4V ∗1 ⊗ S3222V2 ⊗ ∧5V ∗3 ⊗ A(−9))

⊕(∧4V ∗1 ⊗ S2222V2 ⊗ S21111V
∗
3 ⊗ ∧2V4 ⊗ A(−10))

⊕(S2222V2 ⊗ S22222V
∗
3 ⊗ ∧2V4 ⊗ A(−10))

↑

∧4V ∗1 ⊗ S3333V2 ⊗ S22222V
∗
3 ⊗ ∧2V4 ⊗ A(−14)
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Example 5.2.2. Let Q = D5 with the orientation in Figure 5.2. Figure 5.3 is the

1 2 3

4

λ(1) λ(2)

λ(3)

5
λ(4)

Figure 5.2: D5

Auslander-Reiten quiver of Q. The marked indecomposables are summands of V , the

circled ones are in I1 and the boxed ones are in I2. Let V be the direct sum of the
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Figure 5.3: AR quiver of D5

chosen indecomposables having dimension vectors (1, 0, 0, 0, 0), (1, 1, 1, 0, 0), (0, 0, 1, 0, 1),

(0, 0, 1, 1, 1) and (1, 2, 2, 1, 1). V admits a 1-step desingularization with dimension vectors

α = (3, 3, 5, 2, 3) and β = (1, 2, 3, 2, 2). Then A = Sym(V2 ⊗ V ∗1 ) ⊕ Sym(V2 ⊗ V ∗3 ) ⊕

Sym(V4 ⊗ V ∗3 )⊕ Sym(V5 ⊗ V ∗3 ).

Let Ri denote the subspace of Vi of dimension βi and let Qi := Vi/Ri. Then

ξ = R2 ⊗Q∗1 ⊕R2 ⊗Q∗3 ⊕R4 ⊗Q∗3 ⊕R5 ⊗Q∗3 and

t∧
ξ =

⊕
∑3
i=1 |λ(i)|=t

Sλ(1)′Q
∗
1 ⊗ Sλ(12)R2 ⊗ Sλ(234)′Q∗3 ⊗ Sλ(3)R4 ⊗ Sλ(4)R5



5. Source-sink quivers 76

The resolution of OV is-

A

↑

(∧3V ∗1 ⊗ ∧3V2 ⊗ A(−3))⊕ (∧3V2 ⊗ ∧5V ∗3 ⊗ ∧2V4 ⊗ A(−5)

⊕(∧5V ∗3 ⊗ ∧2V4 ⊗ ∧3V5 ⊗ A(−5))

⊕(∧2V ∗1 ⊗ ∧3V2 ⊗ ∧5V ∗3 ⊗ ∧1V4 ⊗ ∧3V5 ⊗ A(−7))

⊕(∧2V ∗1 ⊗ ∧3V2 ⊗ ∧5V ∗3 ⊗ ∧2V4 ⊗ ∧2V5 ⊗ A(−7))

↑

⊕(∧3V ∗1 ⊗ ∧3V2 ⊗ ∧5V ∗3 ⊗ ∧2V4 ⊗ ∧3V5 ⊗ A(−8))

⊕(∧3V ∗1 ⊗ S211V2 ⊗ ∧5V ∗3 ⊗ ∧1V4 ⊗ ∧3V5 ⊗ A(−8))

⊕(∧3V ∗1 ⊗ S211V2 ⊗ ∧5V ∗3 ⊗ ∧2V4 ⊗ ∧2V5 ⊗ A(−8))

⊕(∧3V ∗1 ⊗ S222V2 ⊗ ∧5V ∗3 ⊗ ∧2V4 ⊗ A(−8))

⊕(∧2V ∗1 ⊗ ∧3V2 ⊗ S21111V
∗
3 ⊗ ∧2V4 ⊗ ∧3V5 ⊗ A(−8))

⊕(∧3V2 ⊗ S22222V
∗
3 ⊗ S22V4 ⊗ ∧3V5 ⊗ A(−10))

⊕(∧2V ∗1 ⊗ S222V2 ⊗ S22222V
∗
3 ⊗ S21V4 ⊗ ∧3V5 ⊗ A(−12))

⊕(∧2V ∗1 ⊗ S222V2 ⊗ S22222V
∗
3 ⊗ S22V4 ⊗ ∧2V5 ⊗ A(−12))

↑

⊕(∧3V ∗1 ⊗ S211V2 ⊗ S21111V
∗
3 ⊗ ∧2V4 ⊗ ∧3V5 ⊗ A(−9)

⊕(∧2V ∗1 ⊗ S222V2 ⊗ S32222V
∗
3 ⊗ S22V4 ⊗ ∧3V5 ⊗ A(−13))

⊕(∧3V ∗1 ⊗ S322V2 ⊗ S22222V
∗
3 ⊗ S22V4 ⊗ ∧2V5 ⊗ A(−13))

⊕(∧3V ∗1 ⊗ S322V2 ⊗ S22222V
∗
3 ⊗ S21V4 ⊗ ∧3V5 ⊗ A(−13))

⊕(∧3V ∗1 ⊗ S222V2 ⊗ S22222V
∗
3 ⊗ S22V4 ⊗ ∧3V5 ⊗ A(−13))

↑

(∧3V ∗1 ⊗ S322V2 ⊗ S32222V
∗
3 ⊗ S22V4 ⊗ ∧2V5 ⊗ A(−14))
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Figure 5.4: E6

Example 5.2.3. Q = E6 with the orientation as in Figure 5.4. Figure 5.5 is the

Auslander-Reiten quiver of Q. The marked indecomposables are summands of V , the one

in the circle being I1 ∈ I1 and the one in the square being I2 ∈ I2. Let V = I1⊕ I2. Then

V admits a 1-step desingularization with dimension vectors α = dim V = (1, 3, 4, 3, 1, 2)

and β = (1, 2, 3, 2, 1, 1). The coordinate ring A = Sym(V1 ⊗ V ∗2 ) ⊕ Sym(V3 ⊗ V ∗2 ) ⊕

Sym(V3 ⊗ V ∗4 )⊕ Sym(V3 ⊗ V ∗6 )⊕ Sym(V5 ⊗ V ∗4 ) and

ξ = R1 ⊗Q∗2 ⊕R3 ⊗Q∗2 ⊕R3 ⊗Q∗4 ⊕R3 ⊗Q∗6 ⊕R5 ⊗Q∗4.

t∧
ξ =

⊕
∑5
i=1 |λ(i)|=t

Sλ(1)R1 ⊗ Sλ(12)′Q∗2 ⊗ Sλ(235)R3 ⊗ Sλ(34)′Q∗4 ⊗ Sλ(4)R5 ⊗ Sλ(5)′Q∗6

The resolution of OV is-
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A

↑

(V1 ⊗ ∧3V ∗2 ⊗ ∧4V3 ⊗ ∧2V ∗6 ⊗ A(−5))⊕ (∧4V3 ⊗ ∧3V ∗4 ⊗ V5 ⊗ ∧2V ∗6 ⊗ A(−5)

⊕(V1 ⊗ ∧3V ∗2 ⊗ ∧4V3 ⊗ ∧3V ∗4 ⊗ V5 ⊗ A(−6))

⊕(V1 ⊗ ∧3V ∗2 ⊗ S2221V3 ⊗ ∧3V ∗4 ⊗ ∧2V ∗6 ⊗ A(−8))

⊕(V1 ⊗ ∧3V ∗2 ⊗ S222V3 ⊗ ∧3V ∗4 ⊗ V5 ∧2 V ∗6 ⊗ A(−8))

⊕(∧3V ∗2 ⊗ S2222V3 ⊗ ∧3V ∗4 ⊗ ∧2V ∗6 ⊗ A(−8))

⊕(∧3V ∗2 ⊗ S2221V3 ⊗ ∧3V ∗4 ⊗ V5 ∧2 V ∗6 ⊗ A(−8))

↑

(V1 ⊗ ∧3V ∗2 ⊗ S2222V3 ⊗ ∧3V ∗4 ⊗ S21V
∗
6 ⊗ A(−9))

⊕(V1 ⊗ ∧3V ∗2 ⊗ S2221V3 ⊗ ∧3V ∗4 ⊗ V5 ⊗ S21V
∗
6 ⊗ A(−9))

⊕(V1 ⊗ ∧3V ∗2 ⊗ S2221V3 ⊗ S211V
∗
4 ⊗ V5 ⊗ ∧2V ∗6 ⊗ A(−9))

⊕(V1 ⊗ S211V
∗
2 ⊗ S2222V3 ⊗ ∧3V ∗4 ⊗ V5 ⊗ ∧2V ∗6 ⊗ A(−9))

⊕(V1 ⊗ S211V
∗
2 ⊗ S2221V3 ⊗ ∧3V ∗4 ⊗ V5 ⊗ ∧2V ∗6 ⊗ A(−9))

⊕(∧3V ∗2 ⊗ S2222V3 ⊗ ∧3V ∗4 ⊗ V5 ⊗ S21V
∗
6 ⊗ A(−9))

⊕(∧3V ∗2 ⊗ S2222V3 ⊗ S211V
∗
4 ⊗ V5 ⊗ ∧2V ∗6 ⊗ A(−9))

↑

(V1 ⊗ ∧3V ∗2 ⊗ S2222V3 ⊗ S211V
∗
4 ⊗ V5 ⊗ S21V

∗
6 ⊗ A(−10))

⊕(V1 ⊗ S211V
∗
2 ⊗ S2222V3 ⊗ ∧3V ∗4 ⊗ V5 ⊗ S21V

∗
6 ⊗ A(−10))

⊕(V1 ⊗ S211V
∗
2 ⊗ S2222V3 ⊗ S211V

∗
4 ⊗ V5 ⊗ ∧2V ∗6 ⊗ A(−10))
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Figure 5.5: AR quiver of E6



Chapter 6

Equioriented An

In this chapter we describe briefly the incidence varieties introduced in [Sch92, DSW07].

We work in the case of equioriented An. These varieties determine orbit closures under

some conditions (Proposition 6.0.11). In this case we can use the geometric technique to

calculate resolutions and prove normality of orbit closures in a larger class: orbit closures

admitting a 1-step desingularization are contained in the class of orbit closures arising

from incidence varieties. This provides a different proof of the result in [ADFK81] about

the geometry orbit closures of type Aeqn .

Let x1, x2, · · · , xn denote vertices and a1, a2, · · · , an−1 denote arrows of the quiver

Q = Aeqn with tai = xi and hai = xi+1. Fix two dimension vectors α = (α1, α2, · · · , αn)

and β = (β1, β2, · · · , βn) and let γ = (αi−βi)i∈[1,n]. Let Vi = Kαi and identify RepK(An, α)

with
n−1⊕
i=1

HomK(Vi, Vi+1). Let Gr(β, γ) denote
n∏
i=1

Gr(βi, Vi). Consider the sequence of

tautological vector bundles

0→ Ri → Vi ×Gr(βi, Vi)→ Qi → 0

80
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on Gr(βi, Vi). The incidence variety

Z(β, γ) = {(V, (Rx)) ∈ Rep(An, α)×Gr(β, γ) | V (a)(Rta) ⊂ Rha,∀a ∈ Q1}

was defined by Schofield in [Sch92]. Let p : Rep(An, α) × Gr(β, γ) → Gr(β, γ) be

the projection map. Z(β, γ) is a zero set of a cosection of the vector bundle p∗ξ on

Rep(An, α)×Gr(β, γ), where ξ is a vector bundle on Gr(β, γ) defined as:

ξ =
⊕
a∈Q1

Rta ⊗ Q∗ha.

The following result is proved in [Sch92].

Theorem 6.0.4. 1. The first projection q : Z(β, γ)→ Rep(An, α) is a proper map.

2. p : Z(β, γ) → Gr(β, γ) be the second projection. (Z(β, γ), Gr(β, γ), p) is a vector

bundle.

3. dim Z(β, γ)− dim Rep(Q,α) = 〈β, α〉

Let Y (β, γ) := q(Z(β, γ)). The incidence variety Z(β, γ) is irreducible and q is proper

so that Y (β, γ) is irreducible. This implies that Y (β, γ) = OV for some V ∈ Rep(Q,α).

If the generic fibre of q is a point then Z(β, γ) is a desingularization of Y (β, γ). In

such cases we can use the geometric technique to calculate the resolution F(β, γ)• of the

normalization of Y .

To calculate a resolution using the geometric technique we need a lower bound on D(λ)

as in the earlier cases of Chapter 4 and Chapter 5. This is the content of Proposition

6.0.7. We now describe the combinatorics required to obtain the bound.
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Consider the vector bundle ξ =
⊕

a∈Q1
Rta⊗Q∗ha defined earlier. To calculate F(β, γ)•

we need to calculate
∧t ξ. The exterior powers of ξ decompose according to Cauchy

formula. To describe this decomposition we need some notation. For an (n− 1)-tuple of

partitions λ = (λ(1), . . . , λ(n−1)) we denote by |λ| the sum
n−1∑
i=1

|λ(i)|. With this notation

we have
s∧
ξ =

⊕
|λ|=s

ξ(λ)

where

ξ(λ) =
n−1⊗
i=1

(Sλ(i)Ri ⊗ Sλ(i)′Q∗i+1).

We rearrange the terms to get

ξ(λ) =
n⊗
i=1

(Sλ(i)Ri ⊗ Sλ(i−1)′Q∗i )

with the convention λ(0) = (0), λ(n) = (0). Note that each λ(i) is contained in a βi × γi+1

rectangle (which is same as saying λ(i) ≤ (βi)
γi ,that is, λ

(i)
j ≤ βj for all j and λ

(i)′

k ≤ γk+1

for all k). The contribution of each summand ξ(λ) to cohomology of
∧s ξ can be calculated

by applying Bott’s theorem to the weights

ν(i) = (−λ(i−1)′γi
, . . . ,−λ(i−1)′1 , λ

(i)
1 , . . . , λ

(i)
βi

)

for i = 1, . . . , n. If the resulting contribution is Sµ(i)Vi for each i = 1, . . . , n then the

summand ξ(λ) contributes the term
n⊗
i=1

Sµ(i)Vi to the cohomology of
s∧
ξ. In order to

calculate the terms of the complex F (β; γ)• explicitly let us look more closely at the

contribution of the term ξ(λ). Assume this contribution is nonzero. Applying the Bott
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theorem to the weight ν(i) means we have to find permutations w(i) ∈∑αi
and dominant

weights µ(i) = w(i)(ν(i) + ρ(i))− ρ(i) where ρ(i) = (αi− 1, αi− 2, . . . , 1, 0). This action can

be interpreted as the Bott exchanges described in Chapter 3.

We define operations which associate to terms in F (β; γ)i certain terms in F (β; γ)i−1

or in F (β; γ̃)i, where γ̃ differs from γ at the ith coordinate. Let us denote by P(β, γ)(u)

the set of functions λ such that the term ξ(λ) gives a nonzero contribution to F (β; γ)u.

From the description of the term F (β; γ)u, it is clear that λ ∈ P(β, γ)(u) if and only if

D(λ) :=
n−1∑
i=1

|λ(i)| −
n∑
i=1

Nν(i) = u.

Here Nν(i) is the number of Bott exchanges applied to ν(i).

Let ξ(λ) be a term giving a nonzero contribution to F (β; γ)•. Consider the weight

ν(i) = (−λ(i−1)′γi
, . . . ,−λ(i−1)′1 , λ

(i)
1 , . . . , λ

(i)
βi

).

We say that a corner box in the t-th row of λ(i) is linked to a corner box in s-th column

λ(i−1) if λ
(i−1)′
s + λ

(i)
t = s + t. It is clear that the corner box in λ(i) can be linked to at

most one corner box of λ(i−1) and it can be linked to at most one corner box of λ(i+1).

This definition includes the partitions λ(0) = λ(n+1) = (0) which we treat as having one

corner box each.

Remark 6.0.5. If λ
(i)
t is linked to λ

(i−1)′
s then it means that after (s+ t−1) Bott exchanges

λ
(i)
t is exchanged with λ

(i−1)′
s and we get equality λ

(i)
t −(s+t−1) = λ

(i−1)′
s +1. This means

that the corner boxes of λ
(i)
t and λ

(i−1)′
s are essential for counting the number of exchanges

in the sense that deleting either one of these boxes leads to a weight that contributes
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zero. On the other hand, if we delete both these corner boxes then we get a weight that

contributes a non-zero term with one less exchange, that is after Nν(i) − 1 exchanges.

For any fixed corner box x, either x is linked to some corner box or it is not linked

to any. In the latter case, we associate to λ a term λ̂ be deleting x. More precisely, if λ

is an element of P(β, γ)(u) such that for certain i (1 ≤ i ≤ n − 1), x is a corner box in

λ(i) which is not linked to any of the corner boxes in λ(i−1) or λ(i+1). Then we define λ̂ by

setting λ̂(j) = λ(j) for j 6= i and λ̂(i) is obtained from λ(i) by removing x. Then |λ̂| = |λ|−1

while
n∑
i=1

Nν̂(i) =
n∑
i=1

Nν(i) so that λ̂ ∈ P(β, γ)(u−1). This determines for each u functions

d(γ(i)) : P(β, γ)(u)→ P(β, γ)(u− 1) defined on certain subset of P(β, γ)(u).

If x is linked to some corner box, we consider the chain of linked boxes containing x.

For this, let λ be a term in P(β, γ)(u) such that for certain 0 ≤ i ≤ j ≤ n there are corner

boxes xk of λ(k) for i ≤ k ≤ j such that xi is not linked to a corner box in λ(i−1), xj is not

linked to a corner box in λ(j+1) and xk is linked to xk+1 for i ≤ k ≤ j − 1. This describes

a chain of linked corner boxes starting at xi in λ(i) and ending at xj in λ(j). A chain can

be one of the following three types:

(I) the chain is linked to either λ(0) or λ(n)

(II) the chain contains a corner box linked to zero

(III) the chain is neither linked to λ(0) or λ(n) nor contains a corner box linked to zero.

Our strategy is to preserve the chains of type (I) and remove all unlinked boxes as well

as chains of type (II) and (III) to get an extremal term (a simpler ‘representative’ of λ),

which we will denote by λ̂ and call the extremal term.
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If we have a chain of type (III), we define the term λ̂ by setting

λ̂(k) =


λ(k), if k < i or k > j

λ(k) minus the box xk, if i ≤ k ≤ j

(i.e. we remove the entire chain of linked corner boxes). Then it is clear by definition

that the term λ̂ ∈ P(β, γ)(u− 1). This determines for each u functions d(i, j) = d(γ(j)) ◦

. . . ◦ d(γ(i)) : P(β, γ)(u)→ P(β, γ)(u− 1) defined on certain subset of P(β, γ)(u).

Suppose now that λ ∈ P(β, γ)(u) contains a chain of type (II) and the corner box xr

of λ(r) is linked to zero in λ(r−1)
′
, for some i ≤ r ≤ j. Then

ν(r) = (0, . . . ,−λ(r−1)′2 ,−λ(r−1)′1 , λ
(r)
1 , λ

(r)
2 , . . . , λ

(r)
βr

)

(here λ(r−1)
′

has γr parts with λ
(r−1)′
γr = 0). To this λ(r−1)

′
we associate the term with

γr − 1 parts by deleting the last zero:

λ̂(r−1)
′
= (λ

(r−1)′
1 , λ

(r−1)′
2 , . . . , λ

(r−1)′
γr−1 )

Now define the term λ̂ as follows

λ̂(k) =


λ(k), if k < i or k > j

λ(k) minus the box xk, if i ≤ k ≤ j, k 6= r − 1

λ̂(r−1) if k = r − 1

Since the number of boxes removed equals the number of exchanges reduced, D(λ̂) = u
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and λ̂ ∈ P(β, γ̂)(u) where γ̂ < γ. Let d̂(γ(r)) : P(β, γ)(u)→ P(β, γ̂)(u) denote the function

that maps λ(r) to λ̂(r). Then for each u we have functions d̂γ(i, j) = d̂(γ(j)) ◦ . . . ◦ d̂(γ(i)) :

P(β, γ)(u) → P(β, γ̂)(u) defined on certain subset of P(β, γ)(u). Analogously, we can

define maps d̂β(i, j) : P(β, γ)(u)→ P(β̂, γ)(u) where β̂ < β.

We call the term λ ∈ P(β, γ)(u) extremal if it is not in the domain of any of the

functions d(i, j), d̂γ(i, j) or d̂β(i, j) for 1 ≤ i ≤ j ≤ n− 1.

Let λ be an element of P(β, γ)(u). If λ(i) = (0) for some i then the calculation of

such term can be obtained by calculating corresponding terms in complexes F (β; γ)• for

quivers Am for m < n. Therefore we call the term λ ∈ P(β, γ)(u) proper if λ(i) 6= (0) for

1 ≤ i ≤ n− 1.

Lemma 6.0.6. If λ ∈ P(β, γ)(u) is a proper extremal term, then λ is of the form ((ti +

γ1)
ti , tβni ) for 1 ≤ ti ≤ n− 1.

Proof. Since λ contains no unlinked boxes or chains of linked corners of type (II) or (III),

for every 1 ≤ i ≤ n− 1 there are only two corner boxes in λ(i): one contained in the chain

linked to λ(0) = 0γ1 and the other contained in the chain linked to λ(n) = 0βn .

First consider the chain linked to λ(0) = 0γ1 . We denote the corner box in the s-th row

and t-th column of λ(i) by λ
(i)
st . Now suppose λ

(1)
jk is linked to λ(0). Then by the definition

of linked boxes λ
(1)
j = γ1 + j (so that k = j + γ1). We let t1 = j. If λ

(1)
jk is linked to λ

(2)
pq ,

then λ
(1)′

k + λ
(2)
p = k + p i.e. j + λ

(2)
p = γ1 + j + p. Let t2 = p. Then λ

(2)
p = t2 + γ1.

Continuing in this manner, for every 1 ≤ i ≤ n− 1 we get ti such that λ(i) = ti + γ1.

Similarly, by considering the chain linked to λ(n) = 0βn , we get that there exist si for

1 ≤ i ≤ n− 1 such that λ(i)
′
= si + βn. Since each λ(i) contains atmost 2 corner boxes we

get ti = si.
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Proposition 6.0.7. Let λ ∈ P(β, γ)(u). Then there exists a proper extremal term λ̂ ∈

P(β, γ′)(u′) for some γ′ ≤ γ and u′ ≤ u such that:

D(λ) ≥ D(λ̂)

(here γ′ ≤ γ iff γ′i ≤ γi, 1 ≤ i ≤ n.)

Proof. Starting with λ ∈ P(β, γ)(u), by applying the maps d(γ(i)) and d(i, j) for different

values of i and j, we arrive at a term λ̂ some P(β, γ)(u′) where u′ ≤ u. If λ̂ contains no

chain of type (II) then it is the required extremal term. If λ̂(i) has a corner box linked to

zero, we apply d̂(γ(i)) (or d̂(β(i))) to get a term in P(β, γ̂)(u′) (or P(β̂, γ)(u′) resp.)which

we also denote by λ̂. Continuing in this manner we obtain an extremal λ̂ satisfying the

required properties.

Proposition 6.0.8. Let λ ∈ P(β, γ)(u). Then

D(λ) ≥ 〈(t1, t2, . . . , tn−1), (t1, t2, . . . , tn−1)〉

where 〈·, ·〉 is the Euler form of equioriented quiver An−1.

Proof. We show that D(λ̂) = 〈(t1, t2, . . . , tn−1), (t1, t2, . . . , tn−1)〉, then the result follows

from the previous lemma.

We have λ̂(i) = ((ti + γ1)
ti , tβni ) implies |λ̂(i)| = t2i + ti(γ1 + βn). Also

ν̂(i) = (−(t(i−1))
γ1 , −(ti−1 + βn)ti−1 , (ti + γ1)

ti , (ti)
βn)
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So Nν̂(i) = ti(ti−1 + γ1) + βn(ti−1).

D(λ̂) =
n−1∑
1

|λ̂(i)| −
n∑
1

Nν(i)

=
n−1∑
1

[t2i + ti(γ1 + βn)]−
n−1∑
2

[ti(ti−1 + γ1) + βn(ti−1)]− γ1t1 − βntn−1

=
n−1∑
1

t2i −
n−1∑
2

titi−1

= 〈(t1, t2, . . . , tn−1), (t1, t2, . . . , tn−1)〉

Theorem 6.0.9. Let Q be an equioriented quiver of type An and β, γ be two dimension

vectors. Let α = β + γ and V ∈ Rep(Q,α). Then

(1) F (β, γ)i = 0 for i < 0.

(2) F (β, γ)0 = A.

(3) The summands of F (β, γ)1 are of the form
∧γi+βj+1 Vi⊗

∧γi+βj+1 V ∗j where 1 ≤ i <

j ≤ n.

Proof. Since Q = Aeqn , the Euler form is positive definite. From Lemma 6.0.8 it follows

that any term λ contributes to non-negative degrees in F•. This implies F (β, γ)i = 0 for

i < 0. Also the proper extremal terms occur in positive degrees so the only term in degree

0 is the trivial term λ(i) = 0 for 1 ≤ i ≤ n− 1. So F (β, γ)0 = A.

If a term in P(β, γ) is not extremal, then it becomes a trivial term after applying one

of the maps d(i, j) or d̂(i, j). This implies the term itself is trivial.
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If a term λ ∈ P(β, γ) is extremal then D(λ) = 1 that is

〈(t1, t2, . . . , tn−1), (t1, t2, . . . , tn−1)〉 = 1

By a theorem of Gabriel [Gab75], the roots of this quadratic form are in one-one corre-

spondence with the dimension vectors of indecomposable representations of An. So the

roots are ti,j = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
i to j

, 0, . . . , 0) for 1 ≤ i ≤ j ≤ (n − 1). The extremal term

λ(i, j) corresponding to the root ti,j is given by

λ(k)(i, j) =


0 if k < i or k > j − 1

(1 + γi, 1
βj) if i ≤ k ≤ j − 1

As a result,

ν(k) =



(0γk−γi−1,−1γi ,−1− βj, 1 + γ1, 1
βj , 0βk−βj−1) if i+ 1 ≤ k ≤ j − 1

(0γi , 1 + γi, 1
βj , 0βi−βj−1) if k = i

(0γj−γi−1,−1γi ,−1− βj, 0βj) if k = j

(0γk+βk) otherwise

On applying Bott exchanges to these, we see that the terms corresponding to k = i and

k = j give the partitions (1γi+βj+1) and (−1γi+βj+1) respectively (after γi + βj exchanges)

while the remaining terms give the trivial partition. So the contribution from λ(i, j) is∧γi+βj+1 Vi ⊗
∧γi+βj+1 V ∗j where 1 ≤ i < j ≤ n.

Thus the terms contributing to F (β, γ)1 correspond to vanishing of γi + βj minors of
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the composition V (aj−1) ◦ · · · ◦ V (ai).

We determine the pairs α, β for which Y (β, γ) = q(Z(β, γ)) determines an orbit in

Rep(An, α). For these orbits the collapsing technique gives a resolution of the defining

ideal of the orbit closures Y (β, γ).

Let V = ((Vi = Kαi)i∈Q0 , (Va)a∈Q1) be a representation of An. Let

Si,j = 0→ · · ·K → K → · · ·K → 0→ · · · 0

denote the indecomposable representation of An with K in positions i to j and 0 else-

where. Then V =
⊕

1≤i≤j≤n

mi,jSi,j, where mi,j denotes the multiplicity of Si,j in V . Let

ri,i = dim Vi and ri,j = rank(Vi → Vj) for i < j. Then V is determined by the multiplic-

ities mi,j or by the ranks ri,j. Given any one set of conditions, we can obtain the other

set by elementary algebraic operations. The following result states the formula for this

translation.

Lemma 6.0.10. Rank-multiplicity relations:

ri,j =
∑

k≤i≤j≤l

mk,l

mi,j = ri,j − ri,j+1 − ri−1,j + ri−1,j+1

Now q(Z(β, γ)) determines the orbit of V whenever the the multiplicities mi,j ≥ 0.

This condition translates into conditions on β and γ. As a result we have the following

Proposition 6.0.11. The image q(Z(β, γ)) determines an orbit in Rep(An, α) whenever

β1 ≥ β2 ≥ · · · βn and γ1 ≤ γ2 ≤ · · · γn
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Proof. From Theorem 6.0.9 we know that ri,j = γi + βj. If i > 1 and j < n,

mi,j = ri,j − ri,j+1 − ri−1,j + ri−1,j+1

= γi + βj − γi − βj+1 − γi−1 − βj + γi−1 + βj+1

= 0

If i = 1, m1,j = r1,j − r1,j+1 = βj − βj+1 so that m1,j ≥ 0 implies βj ≥ βj+1 for all

1 ≤ j ≤ n.

If j = n, mi,n = ri,n − ri−1,n = γi − γi−1 so that mi,n ≥ 0 implies γi ≥ γi−1 for all

1 ≤ i ≤ n.

Corollary 6.0.12. Let β, γ be dimension vectors satisfying conditions in Proposition

6.0.11. Suppose the generic fiber of q is a point. Then the complex F(β, γ)• is a minimal

free resolution of Y (β, γ). Moreover, Y (β, γ) is normal, Cohen-Macaulay and has rational

singularities.

Proof. If the generic fibre of q is a point then q is a birational isomorphism and Z(β, γ) is

a desingularization of Y (β, γ). The result then follows from Theorem 6.0.9 and Theorem

3.0.5.



Summary and future work

6.1 Summary

This thesis work demonstrates the use of Weyman’s geometric technique to studying

orbit closures of representations of Dynkin quivers. To make our calculations explicit

and algorithmic, we have restricted to orbit closures admitting a 1-step desingularization

(Section 2.2.1).

Let Q be a Dynkin quiver, V be a representation of Q. The set of representations of Q

of a fixed dimension vector d are denoted by Rep(Q, d). The orbits of Gl(d) in Rep(Q, d)

determine isomorphism classes of representations of Q. Let OV be the closure of the orbit

of V ∈ Rep(Q, d). We wish to study the geometry of orbit closures by calculating the

resolutions of their defining ideals. Our work relies on Theorem 3.0.4 which is the main

theorem of the geometric technique. It turns out that showing a minimal free resolution

exists for OV amounts to showing that a certain difference estimate D(λ) is non-negative

(here λ is a tuple of partitions associated to arrow set of Q). We achieve this by showing

something stronger, namely that D(λ) is bounded below by Euler form of Q evaluated at

a vector u(λ). This is our key result.

In Chapter 4 we use this technique to carry out explicit calculations for orbit closures

92
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arising from representations of non-equioriented A3. The resolutions enable us to read off

certain geometric properties of orbit closures. This case is special because we can find a

partition of the corresponding Auslander-Reiten quiver into 2 parts, thus enabling every

orbit closure to admit a 1-step desingularization. In short, the results of Chapter 4 are

applicable to all orbit closures arising in the representation space of non-equioriented A3.

In Chapter 5 we explore representations of a source-sink quiver Q. We prove our

key result in this context (Theorem 5.1.3) which ascertains the existence of minimal free

resolutions and normality for orbit closures corresponding to Q. Since Q can be of any

Dynkin type, this proves in particular the normality of orbit closures (admitting 1-step

desingularization) for source-sink Dynkin quivers of type E6, E7 and E8.

In Chapter 6 we prove the key result for equioriented quiver An. This gives an alternate

proof of normality for orbit closures (admitting 1-step desingularization) of type An. We

also consider the more general case of Schofield’s incidence varieties Z(β, γ).

To summarize, the lower bound on D(λ) by the Euler form is the main combinatorial

argument that yields all the interesting results. As of now we have this estimate for

quivers with source-sink orientation and for equioriented An.

6.2 Future work

Our hope is that the bound on D(λ) can be generalized to Dynkin quivers with arbitrary

orientation. Having done so, we will be able to prove the existence of minimal free

resolutions and normality for orbit closures (admitting 1-step desingularization) of all

Dynkin quivers.

The next step towards achieving a complete picture for all orbit closures arising from
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Dynkin quivers would be to get rid of the condition of 1-step desingularization. For this

we need to know how to calculate exterior powers of non-semisimple vector bundles. This

is work in progress.

As mentioned earlier, Schofield’s incidence varieties give rise to certain varieties in

Rep(Q, d) which are orbit closures under some additional conditions. Proposition 6.0.11

lists these conditions in the case of equioriented An. It is an interesting problem to find

these conditions for other Dynkin quivers, namely, we would like to know: when are the

varieties determined by Z(β, γ) orbit closures?
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resentation theory of associative algebras. Vol. 1, volume 65 of London Mathe-

matical Society Student Texts. Cambridge University Press, Cambridge, 2006.

Techniques of representation theory. 15, 18, 21

[Bon96] Klaus Bongartz. On degenerations and extensions of finite-dimensional modules.

Adv. Math., 121(2):245–287, 1996. 25
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