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Abstract
The complementary spatial, temporal and specificity advantages of
fMRI, EEG, MEG, PET and DOT for functional brain imaging
motivate interest in multimodal functional brain imaging.
State-variable dynamical systems modeling of neural activity and
its relation to local hemodynamics further coupled with autonomic
physiology offers enhanced spatiotemporal resolution and insight
into physiological signals and mechanisms. However, such a
model also implies an explosion of state dimension. We discuss
strategies for controlling this high dimensionality based on
subspace approaches applied to the observed data and the model
structure, and also describe some implications for understanding
human brain function.

The Dynamic Multi-modal
Integrated framework

State of the Art

•A biophysical model of the nuronal currents,
in response to a stimulus, and its relation to
the brain vasculature was proposed and
developed by Riera et.al [1].

•A modified multi-compartment vascular
model of blood flow in the brain was
proposed by Huppert et.al [2]

•The dynamic framework [3] uses these
models and combines them along with the
different lead fields to get relevant
information about the brain function.

•A state-space formulation of this problem
leads to a exponential growth in the number
of states and this dimensionality issue needs
to be addressed in order to take advantage
of the different modalities, in a
computationally efficient manner.

Challenges and Significance
Significance :

•A unified framework of imaging modalities
will help in gaining relevant information
about the brain function. The table below
shows, why some of the modalities, used
together may help.

Modality Spatial Res. Temporal Res.
fMRI Good Poor
DOT Poor Good
MEG Poor Very Good
EEG Poor Very good
EIT Poor Low

•Can be applied to breast imaging.

Challenges :

•Modalities measure different, or interrelated
parameters.

•The space and time scales of measurements,
may be different.

•The sampling rates of the measurments may
be different.

•The number of parameters involved, is huge.

•Reconstruction of the parameters based on
measurements, becomes a problem.

Neuronal and Windkessel model’s
The neuronal model developed by Riera [1]
takes in the sensory response functions and
gives the voltages on the GABA and
pyramidal cells, this voltage drives the
vasculature and makes blood flow possible for
the activated region in the brain. The
neurovascular coupling is till now not clear,
hence we just use a fourth order model to
relate these to the windkessel model.

 

 

 

The Neuronal Mass model from Riera’s paper [1]
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The multi-compartment windkessel model for vasculature
developed by Huppert [2]

Priliminary results on the combined
framework
The stimulus is a set of 8 pulses each for a
duration of 40ms, at an interval of 400ms. The
figures show the sensory response which
drives the neuronal response and the final
hemoglobin concentration changes as the
vasculature is activated.
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Note the time scales The hemoglobin
concentration changes are measured by fMRI
and DOT. This is a work in progress.

Motivation for Model reduction

•More modalities used; results in; dramatic
increase in # of states.

•More accurate physiological models also
increase the # of states needed if the spatial
extent is taken into account.

Potential industrial applications

•Model reduction methods are useful in other
biological areas of interest such as cellular
transduction and regulation, which are
modelled as nonlinear differential equations.
Such methods are also applicable to
nanophotonics.

•Brain modelling and multi-modal imaging
combined with a set of efficient reduction
methods and computational algorithms
could help in detecting diseases like
Alziemer’s, schizophernia etc.

Model Reduction method: Basic Idea

•Want a Z(t), and V(t) such that

˙̂x(t) = ZT (t)A(t)V(t)x̂(t) + ZT (t)w(t)

y(t) = C(t)V(t)x̂(t) + ν(t)

•A good constraint for getting the V(t) and
Z(t) is that the resulting lower order system
be stable.

•Lyapunov stability equations are

AT (t)Gc(t) + Gc(t)A(t) − B(t)BT (t) + sI = 0

AT (t)Go(t) + Go(t)A(t) − CT (t)C(t) + rI = 0

s and r are small scalar parameters so as to
ensure that the matrices formed by the
equations remain negative definite.

•Gc(t) and Go(t) are controlability and
observability grammian’s.

•Balanced Truncation If we choose
V(t) = Un×m(t)Σ

−1/2
m×m(t). So that

Gc(t)Go(t) = Σ2(t). Then we get ZT (t) = V†(t)
(i.e. pseudoinverse).

•Efficient algorithms for the above
computation exist [6]. A thesis which gives
the underlying theory and its practical
application is [7].

Methods applied to Optical data

•Variable reduction by recomputing V(k) at
every time instant using the algorithm
described in [6].

•Computing the average observability
grammian and using it to compute a fixed V

for all time.

• Finally to select the modes to keep we used
anatomical information.
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Experimental results on DOT data
Simulated test data was obtained from MGH.
The simulator is detailed in [4]. The initial # of
states were 8120 i.e.
nx = nuncngnh = 2 × 2 × 203 × 10. The
measurements are taken from 114
source-detector pairs, at wavelenghts of 690
nm and 830 nm respectively.

Scalp Brain
HbO | HbR | HbO | HbR

Original 8120 state resutls

Reduction to 114 states (based on avg grammian), anatomical
information is not used

Using 14 scalp states, 70 HbO brain states and 30 HbR brain states
(Total 114)

Variable reduction using anatomical information

Images show R2 maps of HbO and HbR values
for scalp and brain.

Observations and Conclusions
From the images we can infer the following.

• In this particular dataset we get around 80
times reduction in the model order. This may
not actually be the case in a real dataset.

•We see that the variable order estimator’s
performance is bad than the averaged one,
this is because we had a trivial state
evolution equation. In multi-modal data we
expect the variable order estimator to
perform better.

•We see that using anatomical information
definitely helps while deciding which modes
to keep.

Future Work

•Finish the ongoing work on the integrated
framework to include EEG, MEG combined
with DOT and fMRI.

•Apply model reduction techniques on it,
which would also help us gain information
on which models are over parametrized.
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