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Abstract

This dissertation deals with highly symmetric abstract polytopes. Abstract polytopes

are combinatorial structures which generalize the classical notion of convex polytopes.

There are many different natural graphs associated with an abstract polytope. Par-

ticular attention is given to two of these graphs, namely the comparability graph of a

polytope and the Hasse diagram of a polytope. We study various types of transitivity

in these graphs.

Both the comparability graph and the Hasse diagram for a polytope inherit nicely

the rank function associated with a polytope. Using this rank function, we can study

specific subgraphs of each graph, by restricting to vertices in a certain range of ranks.

If a polytope is of even rank, there is a natural notion of a “medial layer graph,”

which is the restriction of either the comparability graph, or the Hasse diagram to

the middle two ranks. However, if a polytope is of odd rank, and we restrict to the

middle three ranks, then we obtain two different graphs, one from the comparability

graph, and one from the Hasse diagram.

We study various transitivity properties of these classes of graphs associated with

polytopes. We are able to establish polytope properties that are necessary for a graph

to have certain transitivities. And conversely, if we require a medial layer graph to

have some transitivity, we can understand combinatorial properties of the associated

polytope.

In particular, Monson and Weiss proved a theorem in 2005 about arc transitivity of

medial layer graphs of 4-polytopes; we prove an analog of that theorem for polytopes

of arbitrary even rank. In odd rank, transitivity of the two possible medial layer

graphs had not been studied extensively in the past. We provide some results for

polytopes of arbitrary rank, as well as a classification for polytopes of rank 3.
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Chapter 1

Introduction

Our purpose in this introductory chapter is to set the scene for the rest of the disser-

tation. The chapter is broken into four parts. We first give a brief historical sketch of

the development of the theory of polytopes. Next, we give the basic definitions and

properties related to the study of Abstract Polytopes, and some examples with small

rank. Then we demonstrate the relationship between some highly symmetric poly-

topes and their groups. Finally, we give the basic definitions and properties needed

relating to the study of Algebraic Graph Theory.

1.1 Historical Background

The study of polytopes and their symmetries has a rich history dating as far back

as the time of the ancient Greeks. For the Greeks, a regular solid was an object

with convex regular polygons (all of the same type) as faces, arranged with the same

number of them at every vertex. The discovery of the five regular solids was attributed

to Pythagoras, and in Euclid’s Elements there is a proof that demonstrates that these

five well known Platonic solids are indeed the only ones (see Figure 1.1).
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Figure 1.1: The Platonic Solids

In the late sixteenth century, Johannes Kepler began the modern investigation

of regular polytopes with the discovery of two new regular polyhedra. The faces of

these polyhedra are no longer convex, but are star-shaped, and as a result the points

where more than two faces intersect need not be vertices of the polyhedron. In the

early nineteenth century Louis Poinsot rediscovered these two regular star-polyhedra,

and found two more regular polyhedra (which are dual to Kepler’s). These polyhedra

had convex faces, but the arrangement of the faces around each vertex (such an

arrangement is called a vertex-figure) were star-shaped (see Figure 1.2). Shortly
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after Poinsot’s polyhedra were discovered, Cauchy proved that the list of such regular

star-polyhedra in Euclidean 3-space was complete.

Figure 1.2: The Kepler-Poinsot star-polyhedra

Until the nineteenth century, the study of regular polytopes is limited, almost

entirely, to objects in two and three dimensions. However, around 1850 Ludwig

Schläfli was able to discover regular polytopes and honeycombs in four and more

dimensions. By the beginning of the twentieth century S.L. van Oss proved that the

enumeration of such regular polytopes in higher dimensions was complete.

In the early 1920’s by allowing the vertex-figures to be non-planar polygons and
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the polyhedra to be infinite, Petrie discovered two new regular polyhedra (called

skew apeirohedra). When Petrie shared his discovery with H.S.M (Donald) Coxeter,

Coxeter immediately found the third skew apeirohedra and proved the enumeration

was complete (see Figure 1.3).

Figure 1.3: The Petrie-Coxeter skew apeirohedra

In 1975 Grünbaum proposed the study of slightly more general polyhedra, by al-

lowing skew polygons as faces as well as vertex-figures. He found eight more examples

and twelve infinite families, and Dress completed the classification by discovering one

final case and proving the enumeration was complete.

In the classical theory of higher dimensional polytopes, the proper faces of max-

imal dimension and the vertex-figures are spherical. Danzer and Schulte relax this

condition and set out the basic theory for the combinatorial objects which are known

as abstract polytopes.
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1.2 Abstract Polytopes

We begin this chapter by outlining some of the basic ideas concerning abstract poly-

topes and their symmetries. While our definition will be combinatorial, we keep in

mind that these abstract polytopes are motivated by geometric objects, and thus we

will point out the connection between the combinatorial theory and the geometry.

An abstract polytope P of (finite) rank d (≥ −1), or for brevity, an abstract d-

polytope, is a partially ordered set of faces with the following four properties.

(P1) P contains a least face and a greatest face (which we will call F−1 and Fd

respectively).

(P2) Each maximal chain (called a flag) of P contains d+ 2 faces (including F−1 and

Fd).

(P3) P is strongly connected.

(P4) For each i = 0, 1, ..., d − 1, if F and G are incident faces of P , of ranks i − 1

and i + 1 respectively, then there are precisely two i−faces H of P such that

F < H < G.

The meaning of properties (P1) and (P2) is clear. In particular, if P is the face lattice

of a convex polytope ordered by inclusion, then (P1) says that the empty set and the

polytope itself are faces, and (P2) says that each face of dimension r < d is contained

in some face of dimension r + 1. To clarify (P3) and (P4) more discussion is needed.

From the properties (P1) and (P2), one can show that P has a natural rank

function, with rank(F−1) = −1 and rank(Fd) = d.

Definition 1. For any two faces F and G of P with F ≤ G, we call G/F

G/F := {H | H ∈ P , F ≤ H ≤ G}

13



a section of P .

Let P be a partially ordered set satisfying properties (P1) and (P2), we say P

is connected if either d ≤ 1, or d ≥ 2 and for any two proper faces F and G of

P (meaning any faces other than F−1 and Fd) there is a sequence of proper faces

F = H0, H1, ..., Hk−1, Hk = G such that Hi and Hi−1 are incident for i = 1, ..., k. We

say that P is strongly connected if each section of P is connected.

We denote the set of all flags of P by F(P). Two flags are said to be adjacent if

they differ by exactly one face.

Definition 2. Let P be an abstract polytope. The flag graph of P is the simple

graph with vertices that are the flags of P , and an edge between two vertices in the

graph if and only if the flags are adjacent.

It will be useful to notice the equivalence between P being strongly connected and

P being strongly flag connected (as long as (P1) and (P2) hold). Here strongly flag

connected means that the flag graph of each section is a connected graph.

In the classical theory of polyhedra outlined in the previous section, every edge

of a polyhedron belongs to exactly two faces and two vertices. The property (P4)

states exactly the same thing when P is a 3-polytope, and extends this homogeneity

to higher ranks. Also notice that if Φ is a flag of P , the condition (P4), which will

sometimes be called the diamond condition, tells us that for i = 0, 1, ..., n − 1 there

is exactly one flag that differs from Φ in the i−face. This flag will be denoted Φi and

called the i-adjacent flag to Φ. We quickly notice that (Φi)i = Φ, and if |i − j| > 1

that (Φi)j = (Φj)i for i, j ∈ {0, 1, ..., n− 1}.

We later require the following lemma. Let P be an abstract d−polytope (d ≥ 2),

and let 1 ≤ k ≤ d. The k-skeleton skelk(P) of P is the ranked partially ordered set

14



consisting of the faces of P of rank at most k.

Lemma 3. skelk(P) is connected (with “connectedness” defined as above).

Proof. We proceed by induction on d. The case d = 2 is trivial.

Let d ≥ 3, and let F and G be two proper faces of P contained in skelk(P). By the

connectedness of P there exists a sequence of proper faces F = H0, H1, ..., Hl−1, Hl =

G such that Hi−1 and Hi are incident for each i. We must show that we can find a

sequence inside of skelk(P).

We alter the above sequence as follows: Let ri denote the rank of Hi for each

i. We first remove unnecessary faces so that either r0 ≤ r1 ≥ r2 ≤ r3 ≥ ... or

r0 ≥ r1 ≤ r2 ≥ r3 ≤ ... We do this by removing any face Hi in the sequence

of adjacent faces with the property that rank(Hi−1) < rank(Hi) < rank (Hi+1) or

rank(Hi−1) > rank(Hi) >rank(Hi+1).

Consider the first possibility. If r2j > k for some j, we may replace H2j by a k−face

incident with it while still maintaining the basic features of the sequence H0, ..., Hl.

Thus, we may assume that r2j ≤ k for each j. Now if r2j+1 > k for some j, then H2j

and H2j+2 are faces of the r2j+1−polytope H2j+1/F−1, and hence, by our inductive

hypothesis, can be joined by an appropriate sequence of faces inside this k−skeleton;

in this case we can replace H2j+1 by this sequence (with their initial face H2j and

last face H2j+2 removed). Proceeding in this way for all such j, we finally arrive at a

sequence inside skelk(P) connecting F and G.

For the second possibility we can argue similarly. This ends the proof of the

lemma.

Note that it is not really necessary that P be a polytope. The statement of the

lemma remains true for any strongly connected ranked poset.
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We will be examining polytopes with high degrees of symmetry. We denote the

group of all order preserving bijections (called automorphisms) from P to P as Γ(P)

or Aut(P). Also when we consider order reversing bijections (called dualities), we

denote the group of all automorphisms and dualities of P as D(P). If P admits a

duality then we say that P is self-dual, and then clearly it is the case that Γ(P) has

index 2 in the group D(P). Otherwise, D(P) = Γ(P). The group Γ(P) also acts

naturally on the set of chains of P , where a chain is any totally ordered subset of

P . We can classify chains by looking at the ranks of the faces contained in them.

We call a chain {Fi1 , Fi2 , ..., Fim} of type {i1, i2, ..., im} if rank(Fik) = ik for each k.

Similarly, we call a chain of cotype {j1, j2, ..., jr} if it has faces of every rank except

for {j1, j2, ..., jr}.

A d−polytope (d ≥ 2) is called equivelar if for each i ∈ 1, 2, ..., d− 1 there is an

integer pi so that any section F/G defined by an (i+ 1)−face F and an (i− 2)−face

G is a pi−gon. If P is equivelar we say it has Schläfli type {p1, p2, ..., pd−1}.

For notation, we denote the number of faces of P as |P|, and the number of i-faces

of P as fi(P). (Often we simply write fi where is it clear which polytope is being

considered.)

Definition 4. Given any partially ordered set P , in particular an abstract polytope,

H(P) is the Hasse Diagram for P . Here H(P) is the graph with vertex set equal to

the set of faces of P and with an edge between two vertices F and G of H(P) if and

only if F and G are incident in P and |rank(F )-rank(G)| = 1.
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1.2.1 Examples with Small Rank

We end this section with some examples of d−polytopes for small values of d, and

we will describe these polytopes using their Hasse diagrams. A 0−polytope contains

only the two elements required by property (P1), and hence up to isomorphism there

is only one 0−polytope. A 1−polytope must have a diamond shaped Hasse diagram

due to property (P4), and again up to isomorphism there is only one 1−polytope (see

Figure 1.4)

Figure 1.4: Hasse diagrams for rank 0 and 1 polytopes respectively.

If P is a 2−polytope, it follows easily from the properties (P1),...,(P4) that the

Hasse diagram of P is necessarily of one of the two kinds illustrated in Figure 1.5.

If P is finite, it is identical to the diagram of a convex p−gon, and otherwise to the

apeirogon. Notice that for a fixed p, every two p−gons are combinatorially equivalent.

For example, the convex pentagon and a pentagram, have the same Hasse diagram

(see Figure 1.5), and are thus equivalent in this combinatorial setting. Also notice

that all 2−polytopes are equivelar of type {p} for 2 ≤ p ≤ ∞.
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Figure 1.5: Hasse diagrams for the pentagon and the apeirogon.

In rank 3, we can determine if a polyhedron is equivelar simply by checking if

its 2−faces are all of the same type {p1} and vertex-figures are all of the same type

{p2}. If this is the case, then the polyhedron is equivelar of type {p1, p2}. As a result,

we can conclude that when considered as abstract polytopes, the Platonic solids are

equivelar; for example the cube is of type {4, 3}.
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Figure 1.6: 3-cube and its Hasse diagram

While the regular convex polyhedra are uniquely determined by their Schläfli

type, this is not true for abstract polytopes of rank at least 3. To see this consider

the two following abstract polytopes. First, the regular Platonic solid that is the

octahedron, it is of Schläfli type {3, 4} as it has triangular faces with four of them
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arranged at each vertex. Second, consider what is called the hemi-octahedron. This

can be constructed by taking the octahedron and identifying opposite faces in each

dimension (see Figure 1.7). The hemi-octahedron has only four triangular 2−faces

compared to the octahedron’s eight, and thus is a different polytope. This polytope

can be realized as a projective polyhedron. That is to say, a tessellation of the real

projective plane by 4 triangles.

Figure 1.7: Realization of the hemi-octahedron.

Finally, there are examples of abstract polytopes with small rank that are not

“geometric,” meaning they do not fit well into normal geometric spaces. The examples

seen so far can be thought of as tessellations of manifolds. However there exist

examples, even with full symmetry, that cannot be thought of in this way. For

example the 11-cell (see Chapter 7) which is an abstract 4-polytope consisting of

11 vertices, 55 edges, 55 2-faces, and 11 hemi-icosahedral facets. This polytope was

discovered by Grünbaum in 1977, and rediscovered (and more rigorously studied) by

Coxeter in 1984. It is, however, locally projective, that is its facets and vertex figures

can be thought of as tessellations of real projective planes.

20



1.3 Regular and Chiral Polytopes from Groups

Throughout this dissertation we will be considering polytopes with high degrees of

symmetry. The notions of regularity and chirality both have been studied greatly in

the past, and encode this concept of maximum symmetry.

Definition 5. A d-polytope P is called regular if its automorphism group Γ(P)

has exactly one orbit on the flags of P , or equivalently, if we fix a base flag Φ =

{F−1, F0, F1, ..., Fd}, then for each j ∈ {0, 1, ..., d−1} there exists a (unique) involutory

automorphism ρj of P such that Φρj = Φj (where Φj is the unique j-adjacent flag to

Φ guaranteed by (P4)).

We quickly note some consequences of this definition. If P is a regular d-polytope

then all sections of P are also regular polytopes; any two sections which are defined

by faces of the same rank are isomorphic; and P is equivelar.

For a regular d-polytope P its automorphism group Γ(P) is generated by the

involutions ρ0, ..., ρd−1 given in the above definition for a fixed base flag of P . We call

these ρj distinguished generators of Γ(P), and they satisfy the following relations:

(ρiρj)
pij = 1 for i, j ∈ {0, ..., d− 1},

where pii = 1 for all i, pji = pij =: pi if j = i − 1, and pij = 2 otherwise; here the

pi’s are given by the type {p1, p2, ..., pd−1} of the polytope P . The group Γ(P) and

its distinguished generators also satisify the following intersection property :

〈ρi|i ∈ I〉 ∩ 〈ρi|i ∈ J〉 = 〈ρi|i ∈ I ∩ J〉 for I, J ⊆ {0, ..., d− 1}.

Any group generated by involutions which has this intersection property is called
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a C-group, and thus Γ(P) is always a C-group from what was mentioned above. We

note briefly that the “C” in C-group stands for “Coxeter.” However, not all C-groups

are Coxeter groups as there can be many other relations amongst the generators. In

particular the underlying Coxeter diagram for Γ(P) will always be a string diagram

(since (ρiρj)
2 = ε when |i− j| ≥ 2). Thus Γ(P) will always be what is called a string

C-group.

In [21], it is proved that the combinatorial structure of a regular d-polytope can

be completely described in terms of these distinguished generators. We often take

this approach when creating a computational example. Instead of trying to describe

the polytope combinatorially, we will instead focus on the string C-group and use

Todd-Coxeter coset enumeration to understand the partial order on the faces.

To see how this is accomplished we need further notation. Let Γi := 〈ρj|j 6= i〉,

that is for each i, Γi is the group generated by all but the ith distinguished generator.

Then we can define the faces of P and the partial order in terms of cosets of these

groups. First set Γ−1 := Γd := Γ := Γ(P). Then for all ranks j, we take the set of

j-faces of P to be the set of all right cosets Γjϕ in Γ, with ϕ ∈ Γ. Finally, we define

the partial order by Γjϕ ≤ Γkψ if and only if −1 ≤ j ≤ k ≤ d and Γjϕ ∩ Γkψ 6= ∅.

Then using the Todd-Coxeter algorithm, we can study the combinatorial structure

of a regular polytope P and any of its associated graphs. Similarly, combinatorics of

a chiral polytope can be understood using cosets of its automorphism group.

Definition 6. A d-polytope P (d ≥ 3) is called chiral if it is not regular, but for

any (base) flag Φ and for each i ∈ {1, ..., d − 1} there exists an automorphism σi of

P such that σi fixes all faces in Φ, except for Fi−1 and Fi, and cyclically permutes

consecutive i-faces of the section Fi+1/Fi−2 of P .

We now summarize some results known about the groups of chiral polytopes
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(See [33] for details). Let P be a chiral d-polytope, then the following can be

shown. The automorphism group of P has only two orbits on the set of flags; the

even flags all in one orbit, and the odd flags in the other. Here a flag Ψ of P

is called even (with respect to the base flag Φ) if there exists a finite sequence of

flags Φ = Φ0,Φ1, ...,Φ2k = Ψ where any two consecutive flags are adjacent (a flag

is called odd if it is not even). Also, the automorphism group of P is generated by

the σi for i ∈ {1, .., d − 1}. The σi’s satisfy the relations σpii = 1 for 1 ≤ i ≤ d − 1

and (σiσi+1...σj)
2 = 1 for 1 ≤ i < j ≤ d − 1, where the pi are given by the type

{p1, ..., pd−1} of the polytope. Also, for any i-face of P , the sections Fd/Fi and Fi/F−1

are regular or chiral polytopes. Finally a result which will be useful in later theorems

in this dissertation is that for each i ∈ {0, ..., d − 1} the group of automorphisms of

P acts transitively on the chains of cotype {i}. Also the generators of Γ(P) satisfy

an intersection property which we will not state here.

Similar to the regular case, we would like to utilize the structure of the group Γ(P)

to reconstruct the combinatorial properties of a chiral polytope P . This is achievable

by the following construction. Let A−1 := Ad := Γ(P). Let A0 = 〈σ2, ..., σn−1〉, and

let Ad−1 = 〈σ1, ..., σd−2〉. Finally let Ai = 〈{σj|j 6= i, i+ 1} ∪ {σiσi+1}〉.

Then analogous to the regular case, let the set of proper i-faces of P be the set of

left cosets ϕAi of Ai for ϕ ∈ Γ(P), and let the greatest and least face be represented

by copies of the entire group Γ(P). We then give the partial order, by ϕAi ≤ ψAj if

and only if −1 ≤ i ≤ j ≤ d and ϕAi ∩ ψAj 6= ∅.

Again using coset enumeration, we can understand the combinatorics of a partic-

ular example completely from the structure of the group.
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1.4 Symmetries of Graphs

An automorphism of a simple graph G is a permutation π of the vertex set of G which

has the property that there is an edge between two vertices v and w of G if and only

if there is an edge between π(v) and π(w). The group of all such permutations is the

automorphism group of G, denoted by Aut(G). We say that G is vertex transitive if

Aut(G) acts transitively on the vertex set of G, that is there is just one orbit.

Some basic properties of automorphisms of graphs come as direct consequences

of the definition. We first notice that if two vertices v and w belong to the same

orbit under the action of Aut(G), that is there exists and automorphism α in Aut(G)

such that α(v) = w, then v and w have the same degree. In a connected graph

G, one can define the distance δ(v, w) between two vertices v and w. Then for any

automorphism α of G we have that δ(v, w) = δ(α(v), α(w)). In other words, there can

be no automorphism of a connected graph which sends a pair of vertices of distance

k to a pair of vertices at distance j 6= k.

Definition 7. Let G be a simple graph with vertex set V(G) and edge set E(G);

a t-arc in G is a sequence of vertices (v0, v1, ..., vt) such that {vi−1, vi} ∈ E(G) for

1 ≤ i ≤ t and vi 6= vi−2 for all i.

Definition 8. Let G be a simple graph with vertex set V(G) and edge set E(G). Then

a sequence S = (v0, v1, v2, ..., vt) is a t-star if vi ∈ V (G) for all i, vi 6= vj for i 6= j, and

{v0, vi} ∈ E(G) for all i 6= 0.

It is clear that the action of Aut(G) on the vertices of G can be extended naturally

to an action on the t-arc and the t-stars in G.

Definition 9. G is t-arc transitive if Aut(G) acts transitively on the t-arcs of G but

not on the (t+1)-arcs of G.
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For vertex transitive graphs, Tutte has shown that there exists a maximal value of

t so that Aut(G) is transitive on t−arcs (allowing t=0 here). Using the classification

theorems of finite simple groups, Weiss (1983) showed that there are no finite graphs

(other than the cycles) that have an automorphism group which acts transitively on

the t-arcs for t ≥ 8. However, 7-arc transitive graphs do exist so this bound is sharp.

Tutte also proved that for a k-regular graph (k ≥ 3), Aut(G) is transitive on t−arcs

(t ≥ 1) if and only if for some t-arc [v] there exist (k-1) special automorphisms of the

graph g1, g2, ..., gk−1, which are called shunts, such that each gi takes [v] to a different

successor of the arc. In other words if [v] = (v0, v1, v2, ...vt) and the k neighbors of vt

are {vt−1, w1, w2, ..., wk−1} then gi([v]) = (v1, v2, ...vt, wi) for each i.

For a fixed t−arc [v], the stabilizer sequence for [v] is:

Aut(G) ⊃ Bt ⊃ Bt−1 ⊃ ... ⊃ B1 ⊃ B0

where the subgroup Bi is the pointwise stabilizer of {v0, ..., vt−i}. We can use this

stabilizer sequence to understand the arc transitivity of a graph. In particular, in the

3-regular case if a graph G is t-arc transitive, for t ≥ 1, then we can determine the

arc transitivity of G by examining the subgroup Bt, which is the vertex stabilizer of

any vertex. This result is summarized in the following lemma (see [1], [31]).

Lemma 10. If G is a finite, connected, t-transitive, 3-regular graph, with t ≥ 1, then

t ≤ 5, and the stabilizer Bt is determined up to isomorphism by t. Moreover, if t = 1,

then Bt
∼= Z3; if t = 2, then Bt

∼= S3; if t = 3, then Bt
∼= D12; if t = 4, then Bt

∼= S4;

and if t = 5, then Bt
∼= S4 × Z2.

Unfortunately for graphs with higher valencies no such elegant description is

known for the stabilizers. For calculations later in this dissertation we require the

following lemma.
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Lemma 11. Let G be a simple k-regular graph and [v] = (v0, ..., vt) be a t-arc (t ≥ 1)

in G; then Aut(G) acts transitively on the t-arcs if and only if Aut(G) acts transitively

on the (t-1)-arcs, and B1 acts transitively on the k neighbors of v0 if t = 1, or the

k − 1 neighbors of vt−1 distinct from vt−2 if t > 1.

Proof. Let us begin with the case where t = 1. To show that Aut(G) acts tran-

sitively on the 1-arcs, we require that G is vertex transitive and that the vertex

stabilizer of v0 acts transitively on the k neighbors of v0. Denote the neighbors of v0

by v1, w1, ..., wk−1, and let β1, β2, .., βk−1 be (k-1) automorphisms in the vertex stabi-

lizer of v0 so that βi(v1) = wi. Then to show that Aut(G) acts transitively on the

1-arcs, let [x] = (x0, x1) be any 1-arc in G. We will find an automorphism that sends

[v] to [x]. Since G is vertex transitive, there exists an automorphism α such that

α(v0) = x0. Then α(v1) will be a neighbor of x0, If it is equal to x1 then we are done.

Otherwise βi(v1) = α−1(x1) for some i, and thus αβi(v1) = x1. Since βi(v0) = v0, we

have αβi(v0) = x0. So αβi([v]) = [x] as we needed.

If t > 1 the argument is similar. Denote the neighbors of vt−1 by vt−2, vt, w1, ..., wk−2,

and let β1, β2, .., βk−2 be (k-2) automorphisms in the pointwise stabilizer of (v0, v1, ..., vt−1)

so that βi(vt) = wi. To show that Aut(G) acts transitively on the t-arcs, let [x] =

(x0, x1, ..., xt) be any t-arc in G. Again we will find an automorphism that sends

[v] to [x]. Since Aut(G) acts transitively on the (t-1)-arcs there exists an α such

that α((v0, v1, ..., vt−1)) = (x0, ..., xt−1). Then α(vt) will be a neighbor of xt−1, If it

is equal to xt then we are done. Otherwise βi(vt) = α−1(xt) for some i, and thus

αβi(vt) = xt. Since βi is in the appropriate stabilizer, βi((v0, ..., vt−1)) = (v0, ..., vt−1)

and thus αβi([v]) = [x] as we needed. The other implication of the claim is trivial, so

this completes the proof.

Definition 12. G is t-star transitive if Aut(G) acts transitively on the t-stars of G
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but not on the (t+1)-stars of G.

Definition 13. G is distance transitive if for all vertices u, v, x, y of G such that

δ(u, v) = δ(x, y), there exists an automorphism α in Aut(G) such that α(u) = x and

α(v) = y.

We also will refer to the notion of distance regularity of a graph. If a graph is

distance transitive it will automatically be distance regular (however the converse

is not true). We say that a graph G is distance regular if the number of vertices

at fixed distances from a pair of vertices at any given distance is independent of

the pair chosen at that distance. That is to say, for all pairs of vertices {x, y} of

G, let si,j(x, y) be the number of vertices of G that are of distance i from vertex x

and, at the same time, of distance j from vertex y. Then G is distance regular if

the numbers si,j(x, y) do not depend on {x, y} but only the distance between them;

formally if δ(x, y) = δ(u, v), then si,j(x, y) = si,j(u, v) for all i, j (where δ is the

distance function).

There is a natural hierarchy between some of the previously mentioned graph

theoretical properties, which will be useful in later chapters. For example, for a

graph to be either t-arc or t-star transitive, it must be vertex transitive. Also if a

graph is distance transitive, then all the 1-arcs (and similarly the 1-stars) are in one

orbit (see [1], Ch 20). Also notice, for a graph to be vertex transitive, it must be

k-regular (where k-regular means that all of the vertices have k neighbors).
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Chapter 2

Graphs of More than Three Levels

2.1 Hasse Diagrams

In this section we study the first of several possible graphs associated with an abstract

polytope. Recall that H(P) is the graph with vertex set equal to the set of faces of

P and with an edge between two vertices F and G of H(P) if and only if F and G

are incident in P and |rank(F )−rank(G)| = 1. Given a highly symmetric polytope,

it is natural to ask how much graph symmetry can there be in H(P).

Rank 2

In the rank 2 case, all polytopes are self-dual and regular. Given a rank 2 polytope P ,

the property (P4) tells us that any 0-face F0 of P has two incident 1-faces to it. Also

property (P1) tells us that F0 is incident to F−1. Thus the degree of F0 in H(P) is 3.

So for H(P) to have any of the transitivity being studied, H(P) must be a 3-regular

graph. Then the degree of F2 and F−1 is 3, which implies that f0 = f1 = 3. Thus

the only case in rank 2, where H(P) is k-regular is the abstract polytope that is the

partially ordered set of faces for a triangle.
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Figure 2.1: Unique vertex transitive Hasse diagram of a 2-polytope

In this case H(P) is not only vertex transitive, but is 2-arc transitive, and 3-

star transitive. (Here and many places to follow, supporting calculations for specific

graphs are done in GAP, using the packages Grape and nauty.) This is the complete

classification for transitivity of Hasse Diagrams in the rank 2 case.

Rank 3

Let P be a rank 3 polytope. If we want H(P) to be k-regular, this will imply that

f2 = k. Also every 2-face of P must be incident to (k-1) 1-faces. Similarly, we know

that f0 = k, and every 0-face of P must be incident to (k-1) 1-faces. This implies

that P is equivelar and thus has a Schläfli symbol of {k-1,k-1}.

Now consider a 1-face F1 of P . The property (P4) tells us that there are two

0-faces of P and two 2-faces of P incident to F1. Thus the degree of F1 in H(P) is 4.

Therefore, k=4 and P is of type {3,3}. The only polytope of type {3,3} is the regular

polytope which is isomorphic to the face lattice of the three dimensional simplex.

In this case H(P) is 2-arc transitive, and 4-star transitive.
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Figure 2.2: Unique vertex transitive Hasse diagram of a 3-polytope

Rank 4

Let P be a rank 4 polytope. Again, if H(P) is k-regular, then we know the number of

facets of P is equal to k. Then looking at any face of rank 3, we see that it must have

(k-1) faces of rank 2 incident to it. Considering the property (P4) we know that any

2-face will have two 3-faces incident to it. Thus the k-regularity of H(P) implies that

every 2-face has (k-2) 1-faces incident to it. On the other hand, looking at faces of

lower ranks, we see dually the same arguments give us information about the vertex

figures of P . Putting this all together, we can conclude that P is equivelar and has

Schläfli type {k-2,q,k-2} with f3 = f0 = k and f2 = f1.

We now want to get an idea of the number of flags of P . First recall that if a

polytope is of rank 2 and of type {p}, then it has 2p flags. Now in the rank 4 case, we

have a polytope P with a k-regular Hasse Diagram. Counting the number of flags by

starting at F4 and going toward the lower ranks, we get |F(P)| = k×(k−1)×2(k−2).

Counting the flags differently, instead starting at any specific 2-face of P , we know

that any 2-face F2 is incident with two 3-faces, and the number of flags in the section

F2/F−1 is 2(k-2) where F2/F−1 is of type {k-2}. This gives us |F(P)| = f2×2×2(k−2),
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and thus f2 =
k(k − 1)

2
. Thus for H(P) to be k-regular, P must have an f-vector of

(k,
k(k − 1)

2
,
k(k − 1)

2
, k).

To understand this fully, we consider the examples of polytopes of type {p, q, p}

that arise while varying the value of k. The first possible example is p=2 or k=4.

In this case for each value of q, the polytope P would have to be the unique regular

degenerate polytope of type {2,q,2}. However, the f-vector for these polytopes is

(2,q,q,2). This does not match up with our previous calculations. So there are no

4-regular Hasse Diagrams for polytopes of rank 4.

Next when p=3 or k=5, we get an f-vector of (5,10,10,5). Similar to the rank 2

and rank 3 cases, this is the f vector for the regular simplex. In this case H(P) is

2-arc transitive and 5-star transitive.

When p=4 or k=6, we get an f-vector of (6,15,15,6). As we will show in the final

chapter, there exists a chiral polytope with this f-vector. However, while its Hasse

diagram is a 6-regular graph, there are two orbits of vertices under the action of the

graph’s automorphism group, and thus it is not vertex-transitive.

This classification is not complete in rank 4. There is still room to study the

connection between possible f-vectors for a polytope of fixed Schläfli type in order

to completely understand the rank 4-case. However, it seems likely, due to the re-

strictive nature of this f-vector condition, that the only possible polytope with a

vertex-transitive Hasse diagram is the simplex.

Rank d (≥ 5)

When the rank of P is arbitrary, a few things can be said. First, if H(P) is k-regular

then we know that fd−1 = f0 = k, and that the number of (d-2)-faces incident to any

(d-1)-face is equal to the number of 1-faces incident to a 0-face of P , which are both
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equal to (k-1). Similarly, the number of (d-3)-faces incident to any (d-2)-face is equal

to the number of 2-faces incident to a 1-face of P , which are both equal to k-2.

Counting the flags of P , we get

|F(P)| = fd−2 × 2|F(Fd−2/F−1)| = f1 × 2|F(Fd/F1)|.

Now ifH(P) is vertex transitive, then we know that there will be an automorphism

of H(P) that sends Fd to F−1. This will imply that fd−2 = f1. To understand this

claim, let us build up the possible images of an automorphism α of the graph H(P)

with this property that it sends the least face of P to the greatest face of P . Since

α(F−1) = Fd and α must preserve edges of the graph, we know that α(P0) = Pd−1.

There is no other possible place to send the 0-faces of P , since in H(P) the only

vertices of the graph that are adjacent to Fd are the facets. Then once you know the

images of both P−1 and P0 under α, the only possibility for the image of P1 under

α is Pd−2. This is true since a graph automorphism must send a 1-face to a face

adjacent to the image of a 0-face. With the image of the 0-faces being the facets,

the only options are sending a 0-face to a (d-2)-face or a d-face. However, the unique

d-face already has something mapped to it, namely F−1. Therefore, we can see that

the number of (d-2)-faces is the same as the number of 1-faces.

2.1.1 The d-simplex and the (d+1)-hypercube

Also we can notice that the Hasse diagram of the d-simplex will always be 2-arc

transitive, and (d+1)-star transitive. This can be seen by noticing that there is a

graph automorphism between H(P) for P the d-simplex, and the 1-skeleton of the

(d+1)-hypercube. Then studying symmetries of the Hasse diagram of the simplex,

can just be thought of as studying the symmetries of the graph of 0-faces and 1-faces
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of the (d+1)-hypercube. To see this explicitly, let us give a description of the faces of

the d-simplex. We recall an d-simplex in Euclidean d-space is simply the convex hull

of (d+1) points in general position, where every collection of (m+1) points defines a

face of dimension m. Let us label these points by (1,2,3,...,d+1), then every face of

the d-simplex can be thought of as a binary string of length d+1, where the value in

the kth position is 1 if and only if k is the label of one of the points that determines

the face (for example the whole simplex itself is the binary string 111...1). Then two

vertices F and G of the Hasse diagram are adjacent if their corresponding faces in

the simplex are incident and |rank(F )−rank(G)| = 1. This corresponds to the binary

strings only differing in one position. This description of the vertices and edges of the

Hasse diagram for the d-simplex is a well known realization of the (d+1)-dimensional

hypercube. For the example of the 3-simplex and 4-cube see Figure 2.3.

Figure 2.3: Hasse diagram of 3-simplex and 1-skeleton of 4-cube

To understand that the 1-skeleton of the (d+1)-cube P is (d+1)-star transitive, we

switch back to thinking of the cube as an abstract polytope. The cube is regular and

of type {4,3,3,..,3}. This implies two useful things. First the regularity tells us that

there is an automorphism of the cube (and thus an automorphism of its 1-skeleton)
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that sends any vertex to any other vertex. Thus we see that our graph is vertex

transitive. Also, the vertex figure at any vertex in the cube is of type {3,3,...,3},

which is that of a simplex. The symmetry group of the simplex can be thought of as

the full group of permutations Sd+1 on the (d+1) vertices of the simplex. Thus once

you have fixed a vertex of our graph H(P), there is still full freedom for where the

adjacent vertices can be mapped. And thus H(P) is (d+1)-star transitive.

The argument for 2-transitivity is simpler. Being (d+1)-star transitive implies

that Aut(H(P)) is transitive on the 2-arcs. To show there is more than one orbit on

the 3-arcs of H(P), consider one 3-arc that is defined by three edges which are in a

path in a 2-dimensional square in the hypercube, and another 3-arc defined by three

edges which do not lie in a single square. There cannot be a graph automorphism

which sends the first arc to the second, because a graph automorphism must preserve

distance between vertices. The first and last vertex in the original 3-arc will be at

distance 1, whereas the first vertex and the last vertex of the second 3-arc will be at

a distance which is strictly larger. Thus H(P) is not 3-arc transitive.

Understanding the structure of the hypercube gives us many other results for

graphs related to the Hasse diagram of the simplex. In particular many of the results

from Chapter 3 and Chapter 5 are known in this specific case (see Donovan [10]).
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2.2 Restrictions of the Hasse Diagram to Levels

Definition 14. Let P be an abstract d-polytope and let I be a subset of the set of

ranks {-1,0,1,...,d}. Then we can define a new graph, which is the restriction of H(P)

to the faces with ranks in I. We denote this graph HI(P).

Note that HI(P) is connected if and only if I is of the form {i, i+1, ..., j} for some

i and j with −1 ≤ i < j ≤ d. If I = {i, i+ 1, ..., j} with −1 ≤ i < j ≤ d, then HI(P)

is the Hasse diagram of skelj((skeld−i−1(P
∗))∗), where the ∗ represents the duality (in

the class of ranked partially ordered sets) and is connected by Lemma 3.

Next we want to study what possible transitivity there can be inHI(P) for various

sets I. In particular, if P is an even rank polytope, say of rank 2k, then we pay special

attention to when I={k-1,k}. Also if P is an odd rank polytope, say of rank 2k+1,

then we pay special attention to the case when I={k-1,k,k+1}. Both of these cases

will be studied in their own sections to follow. We can then generalize this to when

|I| = 2 or 3 for some of the results.

Another interesting possible value for I occurs when P is of any rank n, and

I={0,1,2,...n-1}. Simply removing the faces of P that exist in every polytope due to

property (P1), gives an interesting class of graphs to study in the future.

2.3 Restrictions of the Comparability Graph to

Levels

Definition 15. Given any partially ordered set P , in particular an abstract polytope,

C(P) denotes the Comparability Graph for P . Recall that C(P) is the graph with

vertex set equal to the set of faces of P and with an edge between two vertices F and

G of C(P) if and only if F and G are incident in P .
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This definition only differs slightly from that in the last section. Here we allow

edges between faces of P that differ greatly in rank. Quickly we can notice that H(P)

is a subgraph of C(P), since they have the same vertex set and every edge of H(P)

is also an edge of C(P). Also similar to the previous section, we can define CI(P) for

any set I of ranks of P .

To study transitivity in C(P) for an n-polytope P , first we consider C(P) to be k-

regular. If C(P) is k-regular, then in particular the degree of Fn is k in C(P). However,

Fn is comparable to every face (other than itself) in P . Thus k = |P| − 1. Now let

Fn−1 be any (n-1)-face of P . Then in C(P), Fn−1 is adjacent to Fn and all the faces

(other than itself) contained in the section Fn−1/F−1. Thus k = 1 + |Fn−1/F−1| − 1.

Combining the two, we get |P | = |Fn−1/F−1| + 1. Therefore there is only one more

face of P other than what is in Fn−1/F−1, and Fn itself is that one face. Therefore

other than the trivial case of rank P being 0, C(P) is never k-regular, and thus never

has any of the desired transitivity.

Similar to the last section, a few interesting classes of graphs to be studied come

from letting I be very small or very big. In the previous section we were limited to I

containing adjacent ranks, in order for the graph HI(P) to be connected. However,

with CI(P) that is no longer an issue. Also we notice that if I consists of two ranks

differing by 1, then CI(P) and HI(P) are the same graph.
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Chapter 3

Arc Transitivity of M(P)

Our concern in this chapter will be of abstract polytopes of even rank d = 2n. The

main theorem in this chapter is an analog for polytopes of arbitrary even rank to a

theorem of Monson and Weiss [31] about 4-polytopes. When P is of rank 2n we have

the following definition.

3.1 Introduction

Definition 16. Let P be a 2n-polytope. The associated medial layer graph M(P) is

the simple graph with vertex set consisting of the faces F ∈ P such that rank(F ) = n

or rank(F ) = n − 1. The edge set of M(P) is defined naturally such that F and G

are adjacent in M(P) when F and G are incident in P .

We quickly notice that M(P) is a simple bipartite graph, and that

M(P) = skeln((skeln(P ∗))∗);

then the connectedness of M(P) follows from Lemma 3. We now will examine the
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relationships between various types of transitivity in M(P) and the symmetries of P .

Also notice that M(P) = CI(P) = HI(P), with I = {n− 1, n}.

For the medial layer graphs of rank 2n abstract polytopes we can partition the arcs

of a graph into two classes, according to the initial vertex of an arc. We call a t-arc

(v0, v1, ..., vt) in M(P) of type n if rank(v0) = n and of type (n-1) if rank(v0) = n−1.

Definition 17. Let P be an abstract 2n-polytope with medial layer graph M(P),

we say M(P) is t-arc transitive if D(P) acts transitively on the t-arcs but not on the

(t+1)-arcs. (Recall that D(P) is the group of all automorphisms and dualities of P).

Notice immediately that this is a different definition than is classically given in

graph theory. All the graphs studied in this thesis will be associated to a polytope. It

is thus natural to study the action of the polytope automorphisms on these graphs.

D(P) will be isomorphic to a subgroup of Aut(M(P)), and in many cases we will have

D(P)= Aut(M(P)). However, while studying arc transitivity in an arbitrary graph,

there is no polytope in the background, and thus the only option is to consider the

action of the entire automorphism group of the graph on the arcs. The result of this

altered definition is that, if M(P) is t-arc transitive, in our definition of the term,

then classically it is k-arc transitive for some k ≥ t.
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3.2 Dual Neighborliness

Definition 18. Let P be an abstract polytope. Then P is called neighborly if any

two 0-faces are incident with at least one common 1-face.

Our first result of this chapter relates the arc transitivity of a medial layer graph

of a 2n-polytope to the neighborliness of the dual of some of its faces.

Proposition 19. Let P be a rank 2n abstract polytope. If M(P) is k-arc transitive

for some k ≥ 1, then P is self-dual; moreover, if k ≥ 2 then for every n-face Fn ∈ P

the dual of Fn/F−1 is a neighborly polytope.

Proof. First, it is clear that P is self-dual as there must exist a duality of P that

maps an arc of type n to an arc of type (n-1). Now, let Gn be an n-face of P , and

let Gn−1 and Gn−2 be (n-1)-faces and (n-2)-faces incident with Gn such that Gn−2 is

incident with Gn−1. Let G′n−1 be the other (n-1)-face incident with Gn and Gn−2; we

know G′n−1 exists and is unique by (P4). Let [w] := (Fn−1, Fn, F
′
n−1) be any 2-arc

of type (n-1) in M(P), and let [v] := (Gn−1, Gn, G
′
n−1). Then the conditions of the

proposition, imply that there exists an α such that α([v])=[w]. Then α(Gn−2) will

be incident with Fn−1 and F ′n−1. Since α is in D(P), it will either preserve rank or

reverse it, and since rank(α(Gn−1))=(n-1), then rank(α(Gn−2)) will be (n-2). Now

consider the dual of Fn/F−1. Then Fn−1 and F ′n−1 are vertices in this polytope, and

α(Gn−2) is an edge incident with both of them. Therefore since [w] was arbitrary, we

are done.

Now we have seen there is a relationship between the transitivity of a medial

layer graph and the dual neighborliness of a middle rank face. We next impose this

neighborly condition on a polytope with a high degree of symmetry, and see that we

can get back the transitivity of the medial layer graph.

39



Theorem 20. Let P be a rank 6 abstract polytope, which is self-dual, has symmetry

group acting transitively on the chains of type {1,2,3,4}, and any two 2-faces in a

3-face meet in exactly one 1-face. Then M(P) is 3-arc transitive.

Before we begin the proof, let us look more closely at two of the conditions imposed

on the polytope P . First, we require that the symmetry group of P act transitively on

the chains of a certain type. This condition is a relaxing of a regularity type condition.

For example if P is regular or chiral, the symmetry group will act appropriately.

Next you see something like the dual neighborliness condition that came out of the

last proposition. We know that this condition is necessary for medial layer 3-arc

transitivity, we can now see that with the proper symmetry of the polytope, it is

also sufficient. The only difference is that we also require something of a “lattice like

property.” That is, since an abstract polytope need not be a lattice the neighborliness

will allow for multiple edges incident to a pair of vertices, we require, however, that

the edge be unique.

Proof. The vertices of M(P) are the faces of P of ranks 2 and 3. Let [v] = (v0, v1, v2, v3)

and [w] = (w0, w1, w2, w3) be two 3-arcs in M(P) . We want to show there exists an

α ∈ D(P) such that α(v0, v1, v2, v3) = (w0, w1, w2, w3). We will show that any 3-arc

of type 2 can be mapped via α to any other 3-arc of type 2. To show that this is

sufficient, consider the other following three cases. In all cases let δ be a duality of P

and let α be the automorphism between the appropriate 3-arcs of type 2.

1. If [v] is of type 2, and [w] is of type 3, then δ([w]) is a 3-arc of type 2. So there

exists α such that α([v]) = δ([w]). Then, δ−1α([v]) = [w].
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[v] δ−1α //

ε

��

[w]

[v] α // δ([w])

δ−1

OO

2. If [v] is of type 3, and [w] is of type 2, then δ([v]) is a 3-arc of type 2. So there

exists α such that αδ([v]) = [w].

[v] αδ //

δ
��

[w]

δ([v]) α // [w]

ε

OO

3. If [v] is of type 3, and [w] is of type 3, then δ([v]) is a 3-arc of type 2 and

δ([w]) is a 3-arc of type 2. So there exists α such that αδ([v]) = δ([w]). Then,

δ−1αδ([v]) = [w].

[v] δ−1αδ //

δ
��

[w]

δ([v]) α // δ([w])

δ−1

OO

Thus we can restrict to the case where [v] and [w] are 3-arcs of type 2 in M(P).

In other words, rank(v0) = rank(v2) = rank(w0) = rank(w2) = 2 and rank(v1) =

rank(v3) = rank(w1) = rank(w3) = 3. From the conditions of the theorem every

two 2-faces in a 3-face of P intersect in a 1-face. Therefore, since the 2-faces v0 and

v2 lie in the 3-face v1, there exists a 1-face, F1, such that F1 is incident to both v0

and v2. Similarly there exists another 1-face G1, such that G1 is incident to both w0

and w2. Also, since P is self-dual, any two 3-faces which share a 2-face are incident

to a common 4-face. So, since the 3-faces v1 and v3 share the 2-face v2, there exists a
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4-face, F4, such that F4 is incident to both v1 and v3. Similarly there exists another

4-face G4, such that G4 is incident to both w1 and w3. Thus to summarize, the Hasse

diagram of P contains the following subgraphs:

F4•

yyyyyyyy

EEEEEEEE •G4

xxxxxxxx

FFFFFFFF

v1•

xxxxxxxx

FFFFFFFF •v3

xxxxxxxx
w1•

wwwwwwwww

GGGGGGGGG •w3

wwwwwwwww

v0•

EEEEEEEE •v2

yyyyyyyy
w0•

FFFFFFFF •w2

xxxxxxxx

•F1 •G1

Now consider the chains (F1, v0, v1, F4) and (G1, w0, w1, G4) in P . From the con-

ditions of the theorem, we know that Γ(P) acts transitively on the chains of type

{1,2,3,4}. So there exists an α in Γ(P) such that α(F1, v0, v1, F4) = (G1, w0, w1, G4).

By property (P4) the only proper faces of w1/G1 are w0 and w2. So, since α(v0) =

w0, it must be that α(v2) = w2. Again by property (P4) the only proper faces of

the section G4/w2 are w1 and w3. Since α(v2, v1, F4) = (w2, w1, G4), it must be that

α(v3) = w3. So α(v0, v1, v2, v3) = (w0, w1, w2, w3) as we wanted.

The action of D(P) is transitive on the set of 3-arcs of type 2, and therefore

transitive on the set of all 3-arcs. To show that M(P) is 3-arc transitive, all that

remains is to show that D(P) is not transitive on the set of 4-arcs in M(P).

To show this we will show that there exist two 4-arcs [v] = (v0, v1, v2, v3, v4) and

[w] = (w0, w1, w2, w3, w4) in M(P), both of type 2, such that there cannot be an

automorphism α of P with α([v]) = [w].

We construct the 4-arcs by extending a 3-arc of type 2 in two non-equivalent ways.

To begin with, suppose (v0, v1, v2, v3) is any 3-arc of M(P) of type 2. Let F1 be the
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rank 1 face incident to v0 and v2 like before, and let F6 be the greatest face of the

polytope P . Each section of P is a polytope itself, with F6/F1 a rank 4 polytope.

As to not confuse the rank function of this restricted polytope, with that of P , let

us call this new polytope Q and its rank function rankQ. We then have that F1 is

the least face of Q so rankQ(F1) = −1, similarly rankQ(v0) = 0 = rankQ(v2), and

rankQ(v1) = 1 = rankQ(v3).

The polytope Q also contains the face F4 associated with v1 and v3 as before, and

rankQ(F4) = 2. Relative to Q, the face F4 (strictly speaking F4/F1) is a p-gon for

some p ≥ 3, containing the faces v0, v1, v2, and v3. This is true since if p = 2 the

polytope will not satisfy the conditions of the theorem. We now choose v4 to be a

face of rankQ equal to 0, which is incident with v3 but distinct from v2. Now let

[v] = (v0, v1, v2, v3, v4).

In other words, we have the following arrangement in the Hasse Diagram (in terms

of convex geometry, we have two adjacent edges of a polygon defining three vertices

of that polygon):

•F4

yyyyyyyy

EEEEEEEE

v1•

FFFFFFFF •v3

xxxxxxxx

v0•

EEEEEEEE v2• •v4

yyyyyyyy

•F1

Now, let us consider the pointwise stabilizer of the 3-arc (v0, v1, v2, v3) in Γ(P).

Let β be any automorphism in this stabilizer group. Then β fixes v0, v1, and v2, so β

fixes F1 as well. Note here that, by our assumptions on P , the 2-faces v0 and v2 have

only one 1-face in common, namely F1. Similarly β(F4) = F4. Therefore, the image
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under β of the section F4/F1 is F4/F1 itself.

Let w4 be a 2-face incident with v3 which is not incident with F1. Thus w4 6=

v0, v1, ..., v4. The neighborliness condition of the 3-face v3 of P implies that v2 and

w4 are incident to a common 1-face distinct from F1, which we will call H1. We now

set [w] := (v0, v1, v2, v3, v4). Note that any automorphism of P that maps [v] to [w]

must necessarily fix the 3-arc (v0, v1, v2, v3) pointwise.

•F4

yyyyyyyy

FFFFFFFF

v1•

xxxxxxxx

FFFFFFFF •v3

GGGGGGGGG

wwwwwwww

v0•

EEEEEEEE v2•

yyyyyyyy

FFFFFFFF •v4

lllllllllllllllll •w4

g g g g g g g g g g g g g

xxxxxxxx

•F1 •H1

Now we saw that any automorphism β that is in the pointwise stabilizer of the 3-

arc (v0, v1, v2, v3) has the property β(F4/F1) = F4/F1, and we know w4 /∈ F4/F1.

So there can be no automorphism of P that sends the 4-arc (v0, v1, v2, v3, v4) to

(v0, v1, v2, v3, w4), and thus M(P) is not 4-arc transitive.

Theorem 21. Let P be a rank 2n abstract polytope (n ≥ 2), which is self-dual, has

automorphism group acting transitively on the chains of type {n-2,n-1,n ,n+1}, and

for every n-face Fn of P the dual of Fn/F−1 is a neighborly polytope in which any two

vertices are incident with exactly one edge. Then M(P) is 3-arc transitive.

Proof. Here the statement that for every n-face Fn of P the dual of Fn/F−1 is a

neighborly polytope of the type mentioned means that in any n-face of P any two

(n-1)-faces share a common (n-2)-face. The proof of the rank 2n case is an easy
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generalization of the prior theorem, with the neighborliness condition providing the

needed faces of rank (n-2) and (n+1) for the chains. The only change in the proof is

in establishing the existence of the following subgraph of the Hasse diagram:

•Fn+1

vvvvvvvvv

HHHHHHHHH

v1•

IIIIIIIII •v3

uuuuuuuuu

v0•

HHHHHHHHH v2• •v4

vvvvvvvvv

•Fn−2

In the general case, we replace F4 and F1 with Fn+1 and Fn−2 respectively. To

establish the existence of this graph instead of looking at the geometry of F4/F1 we can

instead consider Fn+1/Fn−2. This section is also a p-gon for some p≥3, because again

if p=2 the polytope will not satisfy the conditions of the theorem, so the argument

follows completely.

We saw in the previous two results that we exclude polytopes with particular

2-gon sections. We now consider a proposition to take care of this case.

Proposition 22. Let P be a self-dual polytope of type {p1, .., p2n−1} with pn = 2.

Then M(P) is a 3-arc transitive complete bipartite graph.

Proof. The Schläfli type of the polytope implies that for any (n + 1)−face Fn+1 of

P and any incident (n − 3)−face Fn−3 that the section Fn+1/Fn−3 is the unique 3-

polytope of type {pn−1, 2}. This polytope has the property that each of the two

2-faces is incident to every vertex and edge of the polytope. The 2-faces of these

sections are the same as the n-faces of the larger polytope. This along with the

strong connectedness is enough to guarantee that every n-face of P is incident to
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every (n-1)-face of P . Since P is assumed to be self-dual, M(P) is the complete

bipartite graph with independent sets of the same size, and is thus vertex transitive,

and in fact 3-arc transitive as well.
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3.3 Existence Results

The last theorem creates a class of polytopes with 3-arc transitive medial layer graphs.

Polytopes in this class have a high degree of symmetry, and their faces of middle rank

satisfy a “lattice like property,” and a “dual neighborliness property.” To strengthen

this result, we also would like to guarantee that there are some polytopes that have

these required properties, and thus medial layer 3-arc transitivity is actually achiev-

able. The first example of this has been studied extensively by Monson, Weiss, and

others.

Corollary 23. If P is a finite, regular, self-dual 4-polytope of type {3,q,3}, then

M(P) is bipartite, trivalent, and 3-arc transitive.

Proof. It is clear that M(P) is bipartite and trivalent. Now the group Γ(P) acts

transitively on the chains of type {0,1,2,3} (that is the flags) since P is regular.

Moreover, since every 2-face of P is a triangle, for every 2-face F2 in M(P) the dual of

F2/F−1 is a neighborly polytope with exactly one 1-face between adjacent 0-faces. So

P meets the conditions of the prior theorem, and thus M(P) is 3-arc transitive.

In 2005 Barry Monson and Asia Ivic Weiss proved that, in the {3,q,3} case, M(P)

is actually 3-arc transitive in the stronger classical definition as a graph not just in the

polytope-based definition as a medial layer graph. That is to say, Aut(M(P))=D(P).

Corollary 24. If P is the regular 2n-simplex, then M(P) is 3-arc transitive.

Proof. Let P be the regular 2n-simplex. Then P is self-dual, and Γ(P) acts tran-

sitively on the chains of type {n-2,n-1,n,n+1}. Moreover, every n-face of P is an

n-simplex, and any two vertices of an n-simplex are incident with exactly one edge.

Since the n-simplex is self-dual, the conditions of Theorem 21 are met, and M(P) is

3-arc transitive.
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Using the relationship between the 2n-simplex and the (2n+1)-hypercube, we can

see that this transitivity in the medial layer graph of a simplex gives transitivity in

Q2n+1(Ln, Ln+1) (see [10]). Here Q2n+1(Ln, Ln+1) is the graph obtained by restricting

the graph of the 1-skeleton of the (2n + 1)−cube to vertices of weight n or (n + 1);

recalling that the vertices of a cube can be described using binary strings, we can

define the weight of a given vertex as the number of 1’s in its associated binary

string. In particular, Q2n+1(Ln, Ln+1) is 3-arc transitive. In Chapter 5 of the same

work, it is proved that Q2n+1(Ln, Ln+1) is distance transitive. This alone, implies

that M(P) is at least 1-arc transitive.

Because of the ability to think of M(P) as either the medial layer graph of a

simplex or as Q2n+1(Ln, Ln+1), many more results about the medial layer graph of a

simplex of even rank are also known.

Corollary 25. If P is self-dual regular 6-polytope of type {3,3,4,3,3}, then M(P) is

3-arc transitive.

Examples of regular 6-polytopes of this kind are described in Chapter 12D of [21].

Since they are regular, they satisfy the requirement on transitivity of chains in The-

orem 21. Their 3-faces are tetrahedral. Therefore the 3-faces are lattices and are

dual-neighborly. The graph M(P) will be studied more in Chapter 7 for a specific

example from this family.

Since the simplex is a self-dual neighborly lattice, if we can find classes of self-dual

regular 2n-polytopes with simplices as n-faces, then we can apply the main theorem

of this chapter to obtain classes of 3-arc transitive graphs. Recently such polytopes

have been discovered using modular reduction techniques (see [23], [24], [25], [26]).

Corollary 26. For each prime p > 3 there is a finite, self-dual 4-polytope of type

{3, 6, 3}, obtained using reduction techniques modulo p, with a 3-regular, bipartite,
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3-arc transitive medial layer graph.

Corollary 27. For each prime p ≥ 3 and each n ≥ 2 there is a finite, self-dual

2n-polytope of type {3, ..., 3, p, 3, ..., 3}, obtained using reduction techniques modulo p,

with a (n+1)-regular, bipartite, 3-arc transitive medial layer graph.
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Chapter 4

Stars in M(P)

4.1 Introduction

After examining the transitivity defined in terms of one particular subgraph, a t-arc,

of the medial layer graph of a 2n-polytope, we wish to take these concepts further

and apply them to other subgraphs.

Recall the definition of a k-star in a simple graph G. A sequence S = (v0, v1, v2, ..., vk)

is a k-star if vi ∈ V (G) for all i, vi 6= vj for i 6= j, and {v0, vi} ∈ E(G) for all i 6= 0.

We will be considering k-stars in M(P) for P an abstract polytope of rank 2n.

Definition 28. Let P be an abstract 2n-polytope with medial layer graph M(P), we

say M(P) is k-star transitive if D(P) acts transitively on the k-stars but not on the

(k+1)-stars.

Note again that we are only considering automorphisms of M(P) which are induced

by automorphisms or dualities of P . Moreover, observe that P must necessarily be

self-dual if M(P) is k-star transitive for any k ≥ 0.

We notice a couple things to start. First k-star transitivity and k-arc transitivity

will turn out to be the same for k ≤ 2. However, this is clearly not the case for larger
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values of k. Second, we notice that obviously if a graph has any star transitivity, then

it clearly is vertex transitive as well, and thus is r-regular for some r ≥ k.

Also similar to the chapter on arc transitivity, if a graph is distance transitive, it

will then necessarily be 1-star transitive as well. However, distance transitivity need

not imply higher k-star transitivity for larger values of k.

51



4.2 3-star Transitivity

In this section we try to understand the combinatorial properties of polytopes P in

which the extended automorphism group acts transitively on the 3-stars in M(P).

For the remaining lower values of k, k-star transitivity can be expressed in other

well known notions. In particular, 2-star transitivity is the same as 2-arc transitivity

studied in the last section. If a graph is 1-star transitive it is equivalently 1-arc

transitivie, or a symmetric graph. And finally 0-star transitivity is simply vertex

transitivity of a graph.

We start this section with a class of polytopes that have high star transitivity.

Proposition 29. If P is a self dual regular 2n-polytope of type {p1, p2, ..., p2n−1} with

pn = 2, then M(P) is k-star transitive where k = fn.

Proof. To prove this we use a result of [21], that says if P is of type {p1, p2, ..., p2n−1}

with pn = 2 then every n-face of P is incident to every (n-1)-face of P . Since P is

also self dual, M(P) is the bipartite complete graph on 2fn vertices. This graph is

easily shown to be fn-star transitive.

We next get a result relating to the Schläfli type of the polytope. Similar to the

last section, we need a “lattice like condition” to avoid degenerate cases.

Theorem 30. If P is an equivelar 2n-polytope of type {p1, p2, ..., p2n−1} such that

any three (n-1)-faces are incident with at most one (n-3)-face, and if M(P) is k-star

transitive for k ≥ 3, then pn−1 = pn+1 = 3.

Proof. Fix a base flag (F−1, F0, ..., F2n) in P . The section Fn/Fn−3 is isomorphic

to a p(n−1)-gon. Thus Γ(Fn/Fn−3) ∼= D2(pn−1), the dihedral group of order 2pn−1.

Assume to the contrary that pn−1 ≥ 4, then there exists an alternating sequence

of rank (n-2) and rank (n-1) faces in Fn/Fn−3 of length 8. Denote this sequence
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[G]=(G1, G2, ..., G8). If this is unclear, imagine in the convex case, 4 adjacent edges

in a cycle and the sequence of vertices obtained from their intersections. For example

in the case pn−1 = 5 the convex realization of [G] in Fn/Fn−3 is:

G3•
G2

ooooooooooooo
G4

RRRRRRRRRRRRRRRR

G1• •G5

G6

��������������

G8
•G7

Consider the two 3-stars S1 = (Fn, G2, G4, G6) and S2 = (Fn, G2, G4, G8). Since

M(P) is k-star transitive for k≥ 3, there exists an automorphism α of P that takes S1

to S2. That is, α fixes Fn, G2, and G4, and maps G6 to G8. Now recall our assumptions

on P . Since Fn−3 is incident with G2, G4, G6, its image α(Fn−3) is incident with

G2, G4, G8, and hence must coincide with Fn−3 the only (n-3)-face that is incident

with G2, G4, and G8. Thus α fixes Fn−3 and induces an automorphism of the section

Fn/Fn−3. Thus α acts like an element of D2(pn−1) on the faces of Fn/Fn−3. However,

no such automorphism can exist that fixes two adjacent 1-faces of this section and

permutes two others.

Therefore, there is no automorphism P that would send S1 to S2. So M(P) is

at most 2-star transitive, which is a contradiction to the conditions of the theorem.

Therefore, our assumption that pn−1 ≥ 4 must be false. If pn−1 = 2 then P would

fail to satisfy the lattice type condition on the intersection of three (n-1)-faces. Thus

we have pn−1 = 3 as desired. Using the self-duality of P we get pn+1 = 3 by similar

arguments.
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We next are able to prove a strong relationship between polytopes that are 3-arc

transitive and those that are 3-star transitive.

Theorem 31. Let P be a rank 2n abstract polytope. If M(P) is 3-star transitive,

then for any n-face Fn of P the dual of Fn/F−1 is a neighborly polytope.

Proof. Fix a base flag (F−1, F0, ..., F2n). By property (P4), the section Fn/Fn−2 is

diamond shaped. Let Fn−1 and Gn−1 be the proper faces in this section. Also, let

Hn−1 be another (n-1)-face of Fn and consider the 3-stars (Fn, Fn−1, Gn−1, Hn−1) and

(Fn, Fn−1, Hn−1, Gn−1). Since M(P) is 3-star transitive, there is an α ∈ Γ(P) such

that α((Fn, Fn−1, Gn−1, Hn−1)) = (Fn, Fn−1, Hn−1, Gn−1). Since α is an automorphism

of the polytope it must map a section of P to another. And since α(Fn) = Fn it must

send the section Fn/Fn−2 to the section Fn/Gn−2, where Gn−2 is incident to Fn−1 and

Hn−1.

Fn

wwwwwwwww

GGGGGGGGG

α
++ Fn

wwwwwwwww

HHHHHHHHH

Fn−1

GGGGGGGG
Gn−1

wwwwwwwww
Fn−1

GGGGGGGGG
Hn−1

vvvvvvvvv

Fn−2 Gn−2

Therefore, since Hn−1 was arbitrary, any two (n-1)-faces of P must be incident to

a common (n-2)-face. Thus, when we take the dual of Fn, any two 0-faces must be

incident to a common 1-face. So the dual of Fn is neighborly.

Corollary 32. Let P be a self dual regular rank 2n abstract polytope such that any

two (n-1)-faces of an n-face are incident with at most one (n-2)-face. If M(P) is

3-star transitive, then M(P) is 3-arc transitive.

Proof. Let P be a self-dual regular rank 2n abstract polytope with M(P) 3-star
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transitive. By Theorem 31 for any n-face Fn ∈ P the dual of Fn/F−1 is a neighborly

polytope, and by our assumptions on P , any two vertices in this dual are incident

with exactly one edge. Further P being regular implies that Γ(P) acts transitively on

the chains of type {n-2,n-1,n ,n+1}. So by Theorem 21, M(P) is 3-arc transitive.

Theorem 33. Let P be a regular self-dual rank 6 abstract polytope which is also a

lattice. If M(P) is 3-star transitive, then P is either of type {3,3,r,3,3} or {5,3,r,3,5}

for some r ≥ 3. In fact, the 3-faces of P must be tetrahedra {3,3} or hemi-dodecahedra

{5,3}5.

Proof. Let P be a regular self-dual rank 6 abstract polytope, which is also a lattice.

Then it is clear that all sections of P are also lattices. If M(P) is 3-star transitive,

then by Theorem 30, P is of type {p1, 3, p3, 3, p4}. Note that the condition of Theorem

30 on the (n-1)-faces and the (n-3)-faces is satisfied since P is a lattice. In particular

for any 3-face F3 the section F3/F−1 is of type {p1, 3}. So the dual of any 3-face is of

type {3, p1}. Also by Theorem 31, we know that the dual of F3/F−1 is a neighborly

polytope. The only neighborly regular 3-polytopes of type {3, p1} which are lattices

are the tetrahedron and the hemi-icosahedron (Lemma 11C6 in [21]). So we can

conclude p1 must be 3 or 5.
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Chapter 5

Medial Comparability Graphs for

(2n+1)-Polytopes

5.1 Introduction

Unlike in the even rank case, where there is a natural way to define the medial

layer graph of a rank 2n abstract polytope, when the rank is (2n+1) there are two

possible natural definitions for a similar object. We first study the 1-skeleton of the

order complex restricted to faces of ranks (n-1), n, and (n+1). This is known as the

comparability graph on the faces of those ranks. In the next chapter, we will study

the restriction of the Hasse diagram to the ranks (n-1), n, and (n+1). In the rank

2n case these approaches, for faces of rank (n-1) and n, lead to studying the same

object, which we defined as the medial layer graph. However, in the (2n+1) case, the

graphs are different. The Hasse diagram hides the transitivity of the partial order, so

that there is not an edge between comparable faces that differ in rank by 2 or more.

Whereas in the comparability graph there is an edge between any comparable faces

regardless of rank.
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In the even rank case we were able to use the group D(P) to study the graph

automorphisms of M(P). The group D(P) gave us the flexibility to map faces of

different ranks to each other. However, when the rank is (2n+1) the extended group

of P will not give us enough flexibility. For example, D(P) will not contain any

bijections that send an (n-1)-face to an n-face. For this reason, we will need to use

the entire group of graph automorphisms of the graph to study its symmetry, not just

the ones that come from P itself.

Definition 34. Let P be a (2n+1)-polytope. The (comparability graph based) medial

layer graph MC(P) is the simple graph with vertex set consisting of the faces F of P

such that rank(F ) = (n − 1), n, or (n + 1). The edge set of MC(P) is defined such

that F and G are adjacent in MC(P) if and only if F and G are incident in P .

This is a particular example of the graphs CI(P) for I={n-1,n,n+1} (see section

2.3). We will be examining the transitivity of this medial layer graph MC(P). First

let us look at the least restrictive transitivity, and try to understand when MC(P) is

vertex transitive. It is clear that if MC(P) is going to be vertex transitive, it must be

a k-regular graph.
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5.2 Connectivity

To understand the transitivity properties on MC(P) we first need to understand the

connectivity of some related graphs.

Definition 35. For any graph G with edge set E(G) and vertex set V(G), and for any

set J ⊂ V(G), define a new graph G−J with vertex set V (G−J) = {v ∈ V (G)|v /∈ J}

and edge set E(G − J) = {{v, w} ∈ E(G)|v /∈ J and w /∈ J}.

Lemma 36. Let P be a rank (2n+1) polytope with medial layer graph MC(P). Then,

for i ∈ { n-1,n,n+1}, MC(P)−Pi is a connected graph, where P i is the set of i−faces

of P.

Proof. First note that MC(P) - Pn−1 = skeln+1((skeln(P ∗))∗) and MC(P) - Pn+1 =

skeln((skeln+1(P
∗))∗), so both MC(P) - Pn−1 and MC(P) - Pn+1 are connected by

Lemma 3.

We can treat MC(P) - Pn directly. Suppose we have two vertices of MC(P) - Pn

representing faces F and G of P , each of rank (n-1) or (n+1). First consider the case

that F and G both have rank (n-1), and exploit the connectedness of MC(P) - Pn+1.

Then there exists a sequence of (vertices representing) faces F = H0, H1, ..., Hl−1, Hl =

G such that Hi−1 and Hi are incident for each i, and Hi has rank (n-1) or n for each i.

We may assume that the faces Hi are mutually distinct, so exactly the faces Hi with

i odd, have rank n. If we now replace each Hi, with i odd, by an (n+1)-face incident

with it, we arrive at a sequence in MC(P) - Pn connecting F and G in MC(P) - Pn.

This settles the case where F and G have rank (n-1). A very similar argument applies

dually to the case where F and G have rank (n+1).

Finally, then, if the ranks of F and G are distinct, with rank(F ) = n − 1 and

rank(G) = n + 1, we first replace G by a (n-1)-face G′ incident with it. Next join
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F and G′ by a sequence in MC(P) - Pn, and then append G to this sequence. This

gives a sequence joining F and G in MC(P) - Pn, as desired.
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5.3 Vertex Transitivity

Proposition 37. Let P be a rank (2n+1) polytope. If MC(P) is vertex transitive,

for n ≥ 1, then every graph automorphism of MC(P) maps vertices of equal ranks to

vertices of equal ranks. That is, for all α ∈ Aut(MC(P)), all i ∈ {n − 1, n, n + 1},

and all w,w′ ∈ P i, we have rank(α(w))=rank(α(w′)).

Proof. Let P be a rank (2n+1) polytope and MC(P) be its associated vertex transitive

medial layer graph. Assume to the contrary that there exists i ∈ {n-1,n,n+1}, α ∈

Aut(MC(P)), and w,w′ ∈ Pi such that rank(α(w)) 6= rank(α(w′)). By the prior

lemma, we know that MC(P)−Pi is a connected graph. We will break the proof into

three cases, one for each possible value of i, and prove each case by inducting on the

length of a shortest possible path between w and w′ in these restricted graphs.

First let i=n+1. Let m denote the length of a shortest path between w and w′ in

MC(P)−Pn−1. Then m ≥ 2, by our assumption on w and w′. If m = 2 consider the

diagram.

rank n+ 1 w • • w′

rank n z•

DDDDDDDDD

zzzzzzzzz

In this case wzw′ is a path from w to w′ in MC(P)−Pn−1. So we want to show that

rank(α(w)) = rank(α(w′)).

Both w and w′ are incident with z in P . Let z′ be any rank (n-1) face of P

incident with z. Then w and w′ are both comparable to z′. So in our graph MC(P)

we have the following subgraph:

60



rank n+ 1 w•

CCCCCCCCC

111111111111111 •w′

zzzzzzzzz

���������������

rank n •z

rank n− 1 •z′

���������������

111111111111111

Now α preserves adjacency, so it sends that subgraph to another one of the same

shape. By our assumption we have rank(α(w))6=rank(α(w′)). Also since in MC(P)

there are only edges between vertices of differing ranks, and z and z′ each are joined

to all other vertices, the ranks of α(w), α(w′), α(z), and α(z′) must necessarily be

mutually distinct. However there are only three possible ranks in MC(P), and we

have four different ranks that are not equal. This is a contradiction. Therefore our

assumption is not true, and rank(α(w))=rank(α(w′)).

Now assume by induction that for any two vertices v, v′ ∈ Pn+1 such that the

length of a shortest path between them in MC(P)− Pn−1 is smaller than m, that

rank(α(v))=rank(α (v′)).

Let w and w′ be as before. Let T = v0, v1, ..., vm, with v0 = w and vm = w′ be

a shortest path of length m between w and w′ in MC(P) − Pn−1. Since T is a path

in a bipartite graph, its vertices alternate rank. So rank(vm−2) = rank(vm) = n+ 1.

Now T ′ = v0, v1, ..., vm−2 is a path of length < m in MC(P) − Pn−1 so by induction

we have rank(α(vm−2)) = rank(α(v0)). From the base case m=2 we know that

rank(α(vm−2)) = rank(α(vm)), thus rank(α(vm)) = rank(α(v0)) where v0 = w and

vm = w′. This completes the proof for i = n+ 1.

For i=n-1, thinking dually, the proof is almost identical to the proof of the case

i = n+ 1. We omit the details.

Finally let i=n. Again let m denote the length of a shortest path between w and
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w′, now in MC(P)−Pn+1. Then m ≥ 2, and like in the prior cases we will induct on

m.

For m=2 consider the diagram

rank n w • • w′

rank n− 1 z•

CCCCCCCCC

zzzzzzzzz

Let S be a shortest path from w to w′ in MC(P) − Pn−1. If S has length 2, then

there exists a vertex z′, with rank(z′)=n+1, such that z′ is incident with w and w′.

In MC(P) we then have the following subgraph:

rank n+ 1 z′•

DDDDDDDD

{{{{{{{{

rank n w• •w′

rank n− 1 z•

zzzzzzzzz

CCCCCCCCC

Again in MC(P) edges only exist between vertices of differing ranks (and z, z′ are

joined to all other vertices), and any automorphism of MC(P) preserves adjacency,

so we know that the ranks of α(w), α(z), and α(z′) are all mutual(ly distinct, as are

the ranks of α(w′), α(z), and α(z′). Since there are only three ranks in MC(P) we

know that rank(α(w))=rank(α(w′)).

If S has length greater than 2, then there exist a vertex x and a vertex x′, both of

rank n+1, incident with w and w′ respectively. In MC(P) we then have the following

subgraph:
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rank n+ 1 x• •x′

rank n w• •w′

rank n− 1 z•

{{{{{{{{

BBBBBBBBB


















1111111111111111

Now by our considerations for i = n + 1 we know that rank(α(x))=rank(α(x′)).

However, this forces the ranks of α(w), α(z), and α(x) to be mutually distinct, and

similarly for α(x′), α(w′), and α(z). So rank(α(w)) = rank(α(w′)) as we wanted.

To finish, the inductive step for the case i = n is proved identically to that of for

the case i = n+ 1. So all automorphisms of the medial layer graph have the property

that if two vertices have equal ranks, then they are mapped to two vertices of equal

ranks.

Corollary 38. If P is a rank (2n+ 1) polytope and MC(P) is vertex transitive then

fn−1 = fn = fn+1

Proof. Let x ∈ Pn+1, y ∈ Pn, and z ∈ Pn−1. Since MC(P) is vertex transitive, there

exists an α ∈ Aut(MC(P)) such that α(x)=y. Then by the proposition, for every

v ∈ Pn+1 we have rank(α(v))=n. Thus fn+1 ≤ fn. Similarly, there exists an β ∈

Aut(MC(P)) such that β(y)=z. Then by the proposition, for every v ∈ Pn we have

rank(β(v))=n-1. Thus fn ≤ fn−1. And also there exists an γ ∈ Aut(MC(P)) such

that γ(z)=x. Then by the proposition, for every v ∈ P n−1 we have rank(γ(v))=n+1.

Thus fn−1 ≤ fn+1. Putting all the inequalities together we get fn−1 = fn = fn+1 as

we claimed.
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5.4 Rank 3

We continue our investigation of this class of graphs by completely classifying the

3-polytopes with transitivity in MC(P).

Theorem 39. If P is a 3-polytope and MC(P) is vertex transitive, then P = {2, 2},

the universal regular polytope of type {2, 2} (with f0 = f1 = f2 = 2) and MC(P) is

isomorphic to the (1-arc transitive) 1-skeleton of the octahedron.

Proof. Let G0 be a vertex, G1 an edge, and G2 a 2-face of P . Their valencies in

MC(P) are 2p, 4, and 2q respectively, so p = q = 2. Hence P is equivelar of type

{2, 2}. Moreover, there is only one polytope of type {2, 2}, namely the universal

regular polytope of this type, denoted {2, 2}. To see this consider the figure below:

F3•

wwwwwwww

CCCCCCCCC rank 3

G2•

RRRRRRRRRRRRRRRRRR •

lllllllllllllllllll rank 2

•

RRRRRRRRRRRRRRRRRRR •

llllllllllllllllll rank 1

G0•

FFFFFFFF
•

{{{{{{{{ rank 0

F−1• rank − 1

Figure 5.1: Unique 3-Polytope with vertex transitive MC(P)

If P is of type {2, 2}, then G2/F−1 and F3/G0 are 2-gons, forcing the diagram for

P to close up as indicated. In this diagram, every flag has a unique i−adjacent flag

for each i, so no further faces can be added without violating the diamond condition.

Thus the diagram shown is the Hasse diagram for {2, 2}, and P = {2, 2}.
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Now inspection shows that MC(P) is just the 1-skeleton of the octahedron. The

pairs of faces of P of the same rank correspond to pairs of antipodal vertices of the

octahedron. Notice that the latter is 1-arc transitive.

•F0

oooooooooooooooooooooooooooooo

yyyyyyyy

EEEEEEEE

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

•F2

kkkkkkkkkkkkkkkkkk

3333333333333333 •G1
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•F1
______________________________ •G2

•G0
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gggggggggggggggggggggggggggg
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Chapter 6

Medial Hasse Diagrams for

(2n+1)-Polytopes

6.1 k-Regularity

We saw in the last chapter, that the comparability graph gives one possible way to

define a medial layer graph for a polytope of odd rank. In this chapter we provide

another option for a medial layer graph, based on the Hasse diagram, and get rather

different results.

Definition 40. Let P be a (2n+1)-polytope. The (Hasse diagram based) medial

layer graph MH(P) is the simple graph with vertex set consisting of the faces F of

P such that rank(F ) = (n-1), n, or (n+1). The edge set of MH(P) is defined such

that F and G are adjacent in MH(P) if and only if F and G are incident in P and

|rank(F )− rank(G)| = 1.

This is the special case of HI(P) for I={(n-1),n,(n+1)} (see Section 2.2). We

would like to understand what types of polytopes have transitive medial layer graphs
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using this definition. If a graph is to have any of the transitivities as defined in

previous chapters, a minimum requirement is that it be k-regular for some k. We will

see that this weaker condition yields interesting results.

Lemma 41. If P is a self-dual (2n+1)-polytope and MH(P) is k-regular for some k,

then fn = 2fn−1 = 2fn+1.

Proof. Let P be a (2n+1)-polytope with MH(P) k-regular. Then MH(P) is a bi-

partite graph, with one partition being Pn and the other partition the union of

Pn−1 and Pn+1. Now we can count all the edges of MH(P) by summing up the

degrees of vertices in one partition. Doing this we get |E(MH(P))|=(k)(fn) one

way and |E(MH(P))|=(k)(fn−1 + fn+1) the other. P being self-dual ensures that

fn−1 = fn+1.
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6.2 Maps of Type {4,4}

As in the previous chapter, we will attempt to classify the rank 3 case completely.

Lemma 42. If P is a self-dual 3-polytope and MH(P) is k-regular for some k, then

P is equivelar of type {4, 4} and k = 4.

Proof. Let G0, G1, and G2 be a vertex, an edge, and a 2-face of P . Their valencies

in MH(P) are p, 4, and q respectively for some p, q ≥ 2. Since MH(P) is k-regular,

we must have k = p = 4 = q. In particular, P is of type {4, 4} and k = 4.

Example 43. Let P be the regular self-dual 3-polytope of type {4, 4}(2,0). Then

MH(P) is drawn below:
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Figure 6.1: Unique 2-arc and distance transitive MH(P)

We notice immediately that the girth of MH(P) is 4, so we have a bound on the

t-arc transitivity of t ≤ 3. Consider the pointwise stabilizer of the 2-arc (1,9,2) in

Aut(MH(P)). In this group, it is clear that no graph automorphism could send the

vertex labeled (10) to the vertex labeled (13), since they are both neighbors of (2), and

(13) is adjacent to (1) while (10) is not. So we know that the group of automorphisms
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of MH(P) does not act transitively on the 3-arcs by Lemma 11. In fact, the 3-arc

(1,9,2,10) cannot be mapped onto the 3-arc (1,9,2,13).

Using the GAP package GRAPE, we can fully understand all automorphisms of

this graph. In particular |Aut(MH(P))|=384. From looking at the pointwise arc

stabilizer sequence, we know that for any k-regular graph on n vertices, the group of

automorphisms has size (n)(k)(k− 1)(t−1)(|A|), where t(≥ 1) is the arc transitivity of

the graph and A is the pointwise stabilizer of any t-arc. Now 384=(16)(4)(3)(2), so if

MH(P) is 2-arc transitive the size of the pointwise stabilizer group of any 2-arc should

be 2. Using GAP, we see that indeed the pointwise stabilizer of the 2-arc [1,9,2] is

the subgroup of S16 consisting of identity and the element (3,4)(5,7)(10,15)(11,14).

Moreover, MH(P) is 2-arc transitive.

One last thing to notice about this example is that MH(P) is also distance tran-

sitive. Meaning for all vertices u,v,x,y of MH(P) such that δ(u, v) = δ(x, y) there

is a graph automorphism α such that α(u)=x and α(v)=y where δ is the distance

between two vertices.

Proposition 44. If P is a toroidal edge-transitive 3-polytope of type {4,4} but P 6=

{4,4}(2,0), then MH(P) is 1-arc transitive.

Proof. Let P be a 3-polytope of type {4,4}. When P is of type {4,4} it can be

considered as a map on the torus or on the Klein bottle. We have ruled out the Klein

bottle. We saw in the previous example, if P is of type {4,4}(b,c) for (b,c)=(2,0) or

(0,2), then MH(P) is 2-arc transitive. Siran, Tucker, and Watkins classified all maps

on the torus which are finite and edge transitive into three possible cases. Let T be

the regular tessellation of the Euclidean plane by squares with vertices at points in

the integer lattice Z×Z. We can then think of P as the quotient of T by a sub-lattice.

In two of the cases the sub-lattice is generated by two orthogonal integer vectors (b,c)
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and (-c,b), and P is denoted by {4, 4}(b,c). If bc(b-c)=0 then this map is regular, if

not then it is chiral. In the third case, the sub-lattice is generated by two non-zero

integer vectors (b,c) and (d,d), where if b+c 6=0 then d=b+c, otherwise d can be any

integer greater than 1. If d=b+c then this construction gives a polytope if and only if

|b−c| > 1. If b+c=0, then this construction gives a polytope if and only if |b|, |d| > 1.

When we consider MH(P) we notice that MH(P) can be thought of as the 1-

skeleton of a related self dual 3-polytope of the same type. To see this, consider the

picture that represents the 1-skeleton of P .

• • • •

• • • •

• • • •

• • • •

Then leaving the realization of P , and adding edges of MH(P) in as dotted lines

we get
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Thus we can quickly see that MH(P) is the edge graph of another map of type

{4,4} with the same quotient operation as before, but now instead the tessellation

of the Euclidean plane is by squares with vertices at points in the lattice 1
2
Z × 1

2
Z.

In the first two cases of the quotient of the tessellation, this is equivalent to letting

b′ = 2b and c′ = 2c, and giving us the 1-skeleton of the polytope {4,4}(b′,c′). In the

last case, this is equivalent to letting b′ = 2b, c′ = 2c, and d′ = 2d, and giving us the

1-skeleton of the polytope P ′ = {4,4}(b′,c′)(d′,d′). In all of these cases the new polytope

is again edge transitive and self-dual giving us that MH(P) is at least 1-arc transitive.

To finish we need to show that it is not transitive on the 2-arcs. To see this, fix a

base flag of P , (F0, F1, F2), and let G0 be the unique 0-face of P distinct from F0 and

incident with F1, and G1 the unique 1-face of P distinct from F1 and incident with

both F0 and F2.

We claim that there is no graph automorphism of MH(P) that sends the 2-arc

(F0, F1, F2) to the 2-arc (F0, F1, G0). To see this, notice that (F0, F1, F2) is part of

a 4-cycle in (F0, F1, F2, G1) in MH(P). If there exists a graph automorphism that

sends the 2-arc (F0, F1, F2) to the 2-arc (F0, F1, G0), the latter will need to be part of

a 4-cycle in MH(P). Assume to the contrary that this 4-cycle exists, and let H1 be

the remaining vertex of MH(P) in this cycle. The existence of H1 implies that P is

not a lattice, as F0, and G0 do not have a unique supremum. Now consider what this

implies about the geometric realization of P . We know that P can be thought of as

arising from the regular tessellation of the Euclidean plane by squares with vertices

at points in the integer lattice Z× Z.
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• • • •

∗

• • ∗ •G0 ∗ •

F2 F1

• • G1 •F0 •

• • • •

We can see that H1 has to be one of the edges of P labeled with an ∗, and F0

must be the other vertex adjacent to that edge. Therefore, one of the vectors (1,-1)

or (1,1) or (0,2) must be in the translation group whose quotient with the integer

lattice gave P . For a map from the first two infinite families to be polytopal we must

have b2 + c2 ≥ 2. Thus since we have ruled out the polytope {4,4}(2,0) by assumption,

P cannot be chiral or regular. Finally, in the third infinite family, if (b,c)=(2,0) then

the translation group for the quotient is generated by the two vectors (2,0) and (2,2).

It is easy to see that this quotient is the same as the quotient by (2,0) and (0,2) which

gives the regular polytope {4,4}(2,0) ruled out by assumption. If (b,c)=(1,1) or (1,-1)

then the map is not polytopal. It follows that no edge of P labeled with a ∗ can be

part of a 4-cycle that contains (F0, F1, G0). Thus no graph automorphism can take

(F0, F1, F2) to (F0, F1, G0). This completes the proof.

Proposition 45. If P is a 3-polytope of type {4,4}(b,c) for (b,c) 6=(2,0) or (0,2), then

MH(P) is not distance transitive.

Proof. Let P= {4,4}(b,c) with (b,c) 6=(2,0) or (0,2). Fix a base flag (F0, F1, F2) and

let G0 and G1 be defined in the same way as the previous proof. We will show that
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there is no automorphism α that sends (F0, G0) to (F0, F2) where both these are pairs

of vertices at distance two from each other. From the last proof we saw that if F0

and G0 do not have a unique 1-face that is incident to them both, then P is not a

lattice and P= {4,4}(2,0). Therefore F1 is the unique 1-face of P that is incident to

them both, and thus F0 and G0 are not part of any 4-cycles in MH(P). On the other

hand, F0 and F2 are part of the 4-cycle (F0, F1, F2, G1) and therefore there can be

no automorphism that sends G0 to F2 while fixing F0. Thus MH(P) is not distance

transitive.

After showing that this class of 3-polytopes has vertex transitive medial layer

graphs, it is natural to ask if these are the only 3-polytopes with this property. We can

show, however, that this is not the case. Since there can be graph automorphisms of

MH(P) which are not obtained from polytope automorphisms, understanding vertex

transitivity of a graph using the entire group of graph automorphisms doesn’t narrow

down the class of polytopes as far.

Example 46. A vertex transitive medial layer graph, not obtained from an edge

transitive polytope.

Let P be the polytope of type {4,4} obtained by taking the quotient of the regular

tessellation of the Euclidean plane by squares (with vertices at points in the integer

lattice Z×Z) by a sub-lattice generated by the two orthogonal vectors (3,0) and (0,2).

This will not be an edge transitive polytope (see [35]). However, when you consider

all the graph automorphisms of MH(P), you will see that MH(P) is vertex transitive.

However, we can get around this in a similar manner as in the sections on arc

and star transitivity. We restrict the group of graph automorphisms to those which

are obtained from the polytope. Unfortunately under this restriction, no (2n+1)-

polytope will have a vertex transitive medial layer graph. This is because there will

73



be no applicable automorphism of the polytope that maps an n-face to an (n+1)-face,

for example.

So we will need a slightly relaxed version of vertex transitivity as well. We want

the vertices to be essentially of the same type. So we require that the graph is still

k-regular for some k. We then require that the polytope is i-face transitive for i=n-

1,n,n+1; that is to say if F,G ∈ Pi for i ∈ {n − 1, n, n + 1}, then there exists an

automorphism α of P such that α(F ) = G.

Under this more relaxed definition, and the restriction to graph automorphisms de-

rived from polytope automorphisms, we can show that our classification of 3-polytopes

with vertex transitive medial layer graphs is complete.

Corollary 47. Let P be a 3-polytope, then MH(P) is “vertex transitive”, in the sense

that for rank=0,1, or 2, there is one orbit of the vertices of MH(P) of that rank under

the action of Γ(P), if and only if P is a (regular or chiral) polytope {4,4}(b,c) or a

polytope with exactly 2 flag orbits of type {4,4}(b,c)(d,d).

Proof. Let P be a 3-polytope. If MH(P) is “vertex transitive”, then MH(P) is k-

regular. So by Lemma 42, P is of type {4,4} and thus self-dual. Since MH(P)

is “vertex transitive” then in particular it is transitive on the set of 1-faces of P .

Using the classification of edge transitive maps, P must be one of the three types

mentioned in Proposition 44. On the other hand, if P is one of those three types,

then Example 43 and Proposition 44 show that P is at least 1-arc transitive, and

therefore “vertex transitive”.
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Chapter 7

Notable Polytopes

In various past sections we have seen examples of highly symmetric polytopes and

their associated graphs which illustrate specific theorems that we have proved. We end

this thesis with a collection of graph theoretical information about graphs associated

with polytopes which are interesting in their own right, independent of results proved

in this dissertation.

For reasons of completeness, we will include some important polytopes whose

associated graphs have already been studied in past sections. In rank 3 and 5, we

consider the graphs, H(P), MH(P), and MC(P). In rank 4 and 6, H(P) and M(P)

are considered.
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7.1 3-simplex

We start our discussion with the 3-simplex, that is to say the abstract polytope that

is isomorphic to the face lattice of a convex 3 dimensional simplex (or tetrahedron).

This universal polytope of type {3,3} has four triangular 2-faces, six edges, and four

vertices. Its automorphism group is isomorphic to S4, and can be presented as

Γ(P) = 〈ρ0, ρ1, ρ2|ρ20 = ρ21 = ρ22 = (ρ0ρ2)
2 = (ρ0ρ1)

3 = (ρ1ρ2)
3 = ε〉.

H(P) is a bipartite 4-regular graph on 16 vertices. We have seen that it is

isomorphic to the 1-skeleton of the 4-cube. Aut(H(P)) has 384 elements, where

384 = 16 × 4 × 3 × 2. This leads us to believe that H(P) is 2-arc transitive, which

we saw to be the case in section 2.1.1; computation, or verification on the 4-cube,

confirms this result.

As we also saw in section 2.1.1, H(P) will be 4-star transitive. To check this

computationally, or again on the 4-cube, we look at the structure of the vertex sta-

bilizer of any vertex of the graph. We will see that a vertex stabilizer is isomorphic

to S4, and thus H(P) will be 4-star transitive. H(P) is a distance transitive graph of

diameter 4 and girth 4.

MH(P) is a bipartite graph on 14 vertices with vertices of degree 3 or 4. It too

has diameter and girth of 4, since it is not k-regular it cannot be vertex transitive or

distance regular. MC(P) is a graph on the same 14 vertices, now with degrees 4 or

6. MC(P) has diameter 3 and girth 3. Similar to the last case, MC(P) is not vertex

transitive or distance regular.
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7.2 3-cube

As an abstract polytope the 3-cube is isomorphic to the face lattice of the platonic

solid that is the convex 3 dimensional cube. This universal polytope of type {4,3}

has six square 2-faces, twelve edges, and eight vertices. Its automorphism group has

48 elements, is isomorphic to the octahedral group, and can be presented as

Γ(P) = 〈ρ0, ρ1, ρ2|ρ20 = ρ21 = ρ22 = (ρ0ρ2)
2 = (ρ0ρ1)

4 = (ρ1ρ2)
3 = ε〉.

H(P) is a bipartite graph on 28 vertices with vertices of degrees 4,5,6, or 8. It has

diameter 4 and girth 4. MH(P) is a bipartite graph restricted to 26 of the 28 vertices

of H(P) with vertices of degrees 3 or 4. It has diameter 6 and girth 4. MC(P) is a

graph on the same 26 vertices now with degrees 4,6, or 8. It has diameter 4 and girth

3.
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7.3 Hemi-icosahedron

The hemi-icosahedron is an abstract polytope that is built from half the faces of the

regular convex icosahedron. It is a projective polyhedron and can be realized as a

tessellation of the real projective plane by 10 triangles. Notably the facets of the 11-

cell are all hemi-icosahedral. The hemi-icosahedron has ten triangular faces, fifteen

edges, and six vertices. It is of type {3, 5}5 and its group can be presented as

Γ(P) = 〈ρ0, ρ1, ρ2|ρ20 = ρ21 = ρ22 = (ρ0ρ2)
2 = (ρ0ρ1)

3 = (ρ1ρ2)
5 = (ρ0ρ1ρ2)

5 = ε〉.

H(P) is a bipartite graph on 33 vertices with vertices of degrees 4,6, or 10. It has

diameter 4 and girth 4. MH(P) is a bipartite graph restricted to 31 of the 33 vertices

of H(P) with vertices of degree 3,4, or 5. It has diameter 5 and girth 4. MC(P) is

a graph on the same 31 vertices now with degrees 4,6, or 10. It has diameter 3 and

girth 3.
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7.4 Digonal Dihedron

This degenerate polytope of type {2,2} was seen in chapter 5. It has many interesting

properties such as being: universal, flat, locally spherical, self-Petrie, and self-dual.

It has two digonal 2-faces, two edges, and two vertices. Its automorphism group is

isomorphic to Z3
2 and can be presented as

Γ(P) = 〈ρ0, ρ1, ρ2|ρ20 = ρ21 = ρ22 = (ρ0ρ2)
2 = (ρ0ρ1)

2 = (ρ1ρ2)
2 = ε〉.

H(P) is a bipartite graph on 8 vertices with vertices of degrees 2,3, or 4. It has

diameter 4 and girth 4. MH(P) is a bipartite graph on 6 of the 8 vertices of H(P)

with vertices of degrees 2 or 4. It has diameter 2 and girth 4. Finally, MC(P) is a

4-regular graph on the same 6 vertices. It has diameter 2 and girth 3. Since it is

regular, we can also check for other transitivities. Aut(MC(P)) has 48 = 6 × 4 × 2

elements leading us to think that MC(P) might be 1-arc transitive, and calculation

shows this is the case. Also MC(P) is distance regular, and by examining the orbits

of a vertex under its stabilizer in Aut(MC(P)) we can see that MC(P) is also distance

transitive.
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7.5 Smallest Regular Polytope of Type {4,4}

Regular maps on the torus have been studied extensively, and we demonstrate the

smallest such map (in terms of its automorphism group) here. The polytope {4, 4}(2,0)

was seen in chapter 6. It has four square 2-faces, eight edges, and four vertices. Its

automorphism group is isomorphic to SmallGroup(32,27) and can be presented as

Γ(P) = 〈ρ0, ρ1, ρ2|ρ20 = ρ21 = ρ22 = (ρ0ρ2)
2 = (ρ0ρ1)

4 = (ρ1ρ2)
4 = (ρ1ρ2ρ1ρ0)

2 = ε〉.

H(P) is a bipartite graph on 18 vertices with vertices of degrees 4 or 5. It has

diameter 4 and girth 4. MH(P) is a bipartite 4-regular graph on 16 of the 18 vertices

of H(P) . In fact, computation reveals that there is a graph isomorphism between

MH(P) for this toroidal polytope and H(P) for the 3-simplex. Thus MH(P) is 2-arc

transitive and distance transitive as well. MC(P) has vertices of degrees 4 or 8, and

has diameter 3 and girth 3.
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7.6 Smallest Self-dual Chiral 3-polytope

The problem of finding the smallest 3-polytope with certain properties comes down

to a computational algebra problem of finding normal subgroups of a small index

from a larger group. For example, if we want a chiral polytope of type {4, 4}, then

we start with the automorphism group of the infinite universal regular polytope of

type {4, 4}. This is the Coxeter group with presentation

Γ = 〈ρ0, ρ1, ρ2|ρ20 = ρ21 = ρ22 = (ρ0ρ2)
2 = (ρ0ρ1)

4 = (ρ1ρ2)
4 = ε〉.

We then take its rotation subgroup generated by the generators σ1 = ρ0ρ1 and σ1 =

ρ1ρ2 which can be presented as

Γ+ = 〈σ1, σ2|σ4
1 = σ4

2 = (σ1σ2)
2 = ε〉.

Now to find a group that could be a potential automorphism group for a chiral

polytope, we need to find a group that is normal in Γ+ but not normal in Γ (see [34]

for details).

Γ+ has 2242 proper subgroups of index less than or equal to 100. However only 27

of them are normal in Γ+. There are two normal subgroups of Γ+ or smallest index,

K1 and K2, that are not normal in Γ and they both have index 20 in Γ+. When you

take the quotients of Γ+ by either of them you see that the two quotients are in fact

isomorphic as groups.

Then, once we have found the smallest possible group, we can reconstruct the

combinatorics of the polytope by looking at right cosets of the images of the subgroups

mentioned in section 1.3 for constructing a polytope from its group.

The polytope obtained in this manner is not only the smallest chiral polytope of
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type {4, 4} but is in fact the smallest of all chiral 3-polytopes. It is of type {4, 4}(2,1),

having five square faces, ten edges, and five vertices. Its automorphism group has

order 20 and is isomorphic to a subgroup of the symmetric group S20 acting on the

twenty faces of P generated by the two permutations

σ1 = (1, 2, 4, 8)(3, 6, 11, 16)(5, 10, 15, 19)(7, 12, 13, 17)(9, 14, 18, 20) and

σ2 = (1, 3, 7, 10)(2, 5, 11, 14)(4, 9, 15, 17)(6, 8, 13, 18)(12, 16, 19, 20)

.

H(P) is a bipartite graph with 22 vertices each having degrees of 4 or 5. It has

diameter 4 and girth 4. MC(P) is a graph with 20 vertices each having degree 4

or 8. It has diameter 3 and girth 3. MH(P) is a 4-regular bipartite graph with

20 vertices. Aut(MH(P)) has 80 = 20 × 4 elements, suggesting that MH(P) could

be 1-arc transitive. We saw in Proposition 44 that this is the case, and computation

confirms it as well. Also we know from Proposition 45 that MH(P) cannot be distance

transitive. Computation shows that it is not distance regular either.
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7.7 4-simplex

The first 4-polytope that we consider is the 4-simplex. This abstract polytope is

isomorphic to the face lattice of a convex 4-simplex; it is of type {3, 3, 3} has five

tetrahedral facets, ten triangular 2-faces, ten edges, and five vertices. Its automor-

phism group is isomorphic to S5 and can be presented as

Γ(P) = 〈ρ0, ρ1, ρ2, ρ3|ρ20 = ρ21 = ρ22 = ρ23 = (ρ0ρ2)
2 = (ρ0ρ3)

2 = (ρ1ρ3)
2

= (ρ0ρ1)
3 = (ρ1ρ2)

3 = (ρ2ρ3)
3 = ε〉.

H(P) is a bipartite 5-regular graph on 32 vertices. Aut(H(P)) has 3840 elements,

where 3840 = 32× 5× 4× 6. This leads us to believe that H(P) is 2-arc transitive,

which we saw to be the case in section 2.1.1; computation reveals that this is the

case, as the orbit of a point adjacent to a vertex at the end of a 2-arc, under the

pointwise stabilizer of the 2-arc, has only three of its neighbors. For Aut(H(P)) to

act transitively on the 3-arc, all four neighbors of this vertex (not on the arc) would

have to be in the mentioned orbit.

As we also saw in section 2.1.1, H(P) will be 5-star transitive. To check this

computationally we look at the structure of the vertex stabilizer of any vertex of the

graph. We see that a vertex stabilizer is isomorphic to S5, and thus H(P) will be

5-star transitive. H(P) is a distance transitive graph of diameter 5 and girth 4.

M(P) is a bipartite 3-regular graph on 20 vertices. Aut(M(P)) has 240 elements,

where 240 = 20× 3× 22. This leads us to believe that M(P) will be 3-arc transitive,

and we saw this to be the case in Corollary 23. Also computation shows that M(P) is

3-star transitive as well. M(P) is a distance transitive graph of diameter 5 and girth

6, which is isomorphic to Q5(L2, L3).
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7.8 11-cell

The 11-cell is an abstract regular 4-polytope with many interesting properties. It was

discovered by Grünbaum in 1977 (and then independently by Coxeter in 1984). It is

the universal polytope of type {{3, 5}5, {5, 3}5}; has 11 hemi-icosahedral 3-faces, 55

triangular 2-faces, 55 edges, 11 vertices; and is self-dual. Its automorphism group has

660 elements, is isomorphic to the projective special linear group L2(11), and can be

presented as follows.

Let ρ0, ρ1, ρ2, ρ3 be involutions that are generators of the Coxeter Group for the

3-dimensional regular hyperbolic honeycomb {3, 5, 3}. That is to say ρ2i = ε for

i=0,1,2,3; (ρiρj)
2 = ε if |i− j| ≥ 2; (ρiρi+1)

3 = ε for i = 0, 2; and (ρ1ρ2)
5 = ε.

•
3
•

5
•

3
•

Γ(P) is a quotient of that Coxeter group by two more relations:

(ρ0ρ1ρ2)
5 = (ρ1ρ2ρ3)

5 = ε.

M(P) is a 3-regular bipartite graph on 110 vertices. Aut(M(P)) has 1320 elements,

where 1320 = 110×3×22. We know from Theorem 21 that M(P) is k-arc transitive for

k ≥ 3. Computation confirms that it is indeed 3-arc transitive with trivial stabilizer

of a 3-arc (symmetric trivalent graphs always have this trivial arc stabilizer; see [1]).

Since M(P) is 3-arc transitive, we can also ask about its star transitivity. M(P) is

3-star transitive, which is the maximum possible giving the degree of the vertices.

M(P) is not distance regular, and thus not distance transitive. It has diameter 7 and

girth 10.
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7.9 57-cell

In [6] Coxeter discusses what happens when the roles of the hemi-icosahedron and

the hemi-dodecahedron of the 11-cell are reversed, as to create a 4-polytope with

hemi-dodecahedral facets and hemi-icosahedral vertex figures. The resulting abstract

polytope is called the 57-cell. It is the universal polytope of type {{5, 3}5, {3, 5}5}, and

has 57 hemi-dodecahedral facets, 171 pentagonal 2-faces, 171 edges, and 57 vertices. It

is self dual and its symmetry group has 3240 elements, is isomorphic to the projective

special linear group L2(19), and can be presented using the standard Coxeter group

relations along with the same two extra relations that determined the 11-cell.

ρ2i = ε if i=0,1,2,3; (ρiρj)
2 = ε if |i − j| ≥ 2; (ρiρi+1)

5 = ε for i = 0, 2; and

(ρ1ρ2)
3 = ε.

•
5
•

3
•

5
•

Γ(P) is a quotient of that Coxeter group by two more relations:

(ρ0ρ1ρ2)
5 = (ρ1ρ2ρ3)

5 = ε.

M(P) is a 5-regular bipartite graph on 342 vertices. Aut(M(P)) has 6840 elements,

where 6840 = 342 × 5 × 4. This would lead us to believe that either M(P) is 2-arc

transitive with trivial stabilizer of a 1-arc, or 1-arc transitive, and having a group of

order 4 as the pointwise stabilizer of any 2-arc. Computation reveals that the latter is

the case, and M(P) is 1-arc transitive. M(P) is not distance regular, and has diameter

6 and girth 6.
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7.10 Smallest Self-dual Chiral 4-polytope

As in the case for the smallest chiral 3-polytope, finding small chiral 4-polytopes be-

comes a computational algebra problem of finding normal subgroups of a small index

from a larger group. To construct the smallest chiral 4-polytope of type {4,4,4} (which

is the smallest self-dual chiral 4-polytope of any type), we start with involutions that

generate the Coxeter group presented as:

Γ = 〈ρ0, ρ1, ρ2, ρ3|ρ20 = ρ21 = ρ22 = ρ23 = (ρ0ρ2)
2 = (ρ0ρ3)

2 = (ρ1ρ3)
2

= (ρ0ρ1)
4 = (ρ1ρ2)

4 = (ρ2ρ3)
4 = ε〉.

We then take its rotation subgroup generated by the generators σ1 = ρ0ρ1, σ2 =

ρ1ρ2, and σ3 = ρ2ρ3, which can be presented as

Γ+ = 〈σ1, σ2, σ3|σ4
1 = σ4

2 = σ4
3 = (σ1σ2)

2 = (σ2σ3)
2 = (σ1σ2σ3)

2 = ε〉.

Then to find a group that could be a potential automorphism group for a chiral

polytope, we need to find a group that is normal in Γ+ but not normal in Γ (again

see [34] for details). The smallest such polytope obtained in this way is the universal

polytope of type {{4, 4}(2,1), {4, 4}(1,2)} (see [4] for more details about this polytope

and a description of its medial layer graph). P is a self-dual polytope which has six

facets, fifteen square 2-faces, fifteen edges, and six vertices.

M(P) is the 4-regular bipartite graph with 30 vertices drawn in Figure 7.1. Aut(M(P))

has 720 elements and is isomorphic to S6. Since 720 = 30× 4× 3× 2, we are led to

believe that either M(P) is 2-arc transitive with a group of size two acting as the sta-

bilizer of a 2-arc, or is 1-arc transitive with a group of size six acting as the stabilizer
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of a 1-arc. Computation shows us that M(P) is a 2-arc transitive graph.

Also since Aut(M(P)) acts transitively on the 2-arcs of M(P), we can ask if M(P)

is k-star transitive. It turns out that Aut(M(P)) acts transitively on the 4-stars,

which is maximum given the degree of the graph. M(P) is not distance regular, and

has diameter 4 and girth 6.

Figure 7.1: Medial layer graph of the smallest self-dual chiral 4-polytope
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7.11 4-polytope with a Semisymmetric Graph

In [30] polytopes which have associated with them semisymmetric graphs are studied.

A semisymmetric graph is a k-regular graph G such that Aut(G) acts transitively on

the edges of G but not transitively on the vertices of G. Proposition 15.1 in [1], shows

us that G must be bipartite, and thus has vertices of two types. If we consider medial

layer graphs, we can find an example of such a graph coming from a 4-polytope.

Let P be the universal 4-polytope of type {{3, 6}(1,1), {6, 3}(3,0)}. Then P has

facets of type {3, 6}(1,1) and vertex figures of type {6, 3}(3,0), and thus cannot be self-

dual. P has nine facets, twenty seven triangular 2-faces, 27 edges, and only 3 vertices.

Its automorphism group has 324 elements and has presentation as follows:

Let ρ0, ρ1, ρ2, ρ3 be involutions that are generators of the Coxeter Group for the

infinite universal polytope {3, 6, 3}. That is to say ρ2i = ε for i=0,1,2,3; (ρiρj)
2 = ε if

|i− j| ≥ 2; (ρiρi+1)
3 = ε for i = 0, 2; and (ρ1ρ2)

6 = ε.

•
3
•

6
•

3
•

Γ(P) is a quotient of that Coxeter group by two more relations (see [30]):

(ρ2ρ1ρ2ρ1ρ0)
2 = (ρ1ρ2ρ3)

6 = ε.

M(P) is a 3-regular bipartite graph on 54 vertices, and is known as the Gray

graph. Aut(P) has 1296 elements. However, the orbit of any vertex of M(P) under

Aut(P) has size of only 27, and thus M(P) is not vertex transitive. However, the

orbit of any pair of adjacent vertices (considered without order) is 81 under Aut(P).

Thus M(P) is edge-transitive. Since it is 3-regular and edge transitive but not vertex

transitive, we have that M(P) is semisymmetric.
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Even though we do not have vertex transitivity, we can still consider another type

of arc transitivity in M(P). For each of the two types of vertex in our bipartite graph,

we can consider only arcs that begin with vertices of that type, and see if Aut(P)

acts transitively on these two sets. If you consider an arc that starts with a 2-face,

then there is only one orbit of 3-arcs of this kind under the action of Aut(P), and

the pointwise stabilizer of any 3-arc is trivial. Thus M(P) is 3-arc transitive on arcs

of this kind. On the other hand, M(P) is 4-arc transitive on arcs with initial vertex

corresponding to a 1-face.
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7.12 Smallest Known Chiral 5-polytope

As in the case in ranks three and four, finding small chiral 5-polytopes becomes a

computational algebra problem of finding normal subgroups of a small index from

a larger group. To construct the smallest known chiral 5-polytope, which is of type

{3,4,4,3}, we start with involutions that generate the Coxeter group presented as:

Γ = 〈ρ0, ρ1, ρ2, ρ3, ρ4|ρ20 = ρ21 = ρ22 = ρ23 = ρ24 = (ρ0ρ2)
2 = (ρ0ρ3)

2 = (ρ0ρ4)
2

= (ρ1ρ3)
2 = (ρ1ρ4)

2 = (ρ2ρ4)
2 = (ρ0ρ1)

3 = (ρ1ρ2)
4 = (ρ2ρ3)

4 = (ρ3ρ4)
3 = ε〉.

We then take its rotation subgroup generated by the generators σ1 = ρ0ρ1, σ2 =

ρ1ρ2, σ3 = ρ2ρ3, and σ4 = ρ3ρ4, which can be presented as:

Γ+ = 〈σ1, σ2, σ3, σ4|σ3
1 = σ4

2 = σ4
3 = σ3

4 = (σ1σ2)
2 = (σ2σ3)

2 = (σ3σ4)
2

= (σ1σ2σ3)
2 = (σ2σ3σ4)

2 = (σ1σ2σ3σ4)
2 = ε〉.

Then to find a group that could be a potential automorphism group for a chiral

polytope, we need to find a group that is normal in Γ+ but not normal in Γ (again

see [34] for details). The smallest such polytope obtained in this way is the universal

polytope of type {{{3, 4}, {4, 4}(2,1)}, {{4, 4, }(2,1), {4, 3}}}. It has six facets, fifteen

octahedral 3-faces, forty triangular 2-faces, fifteen edges, and six vertices (see [4] for

a detailed description).

MH(P) is a bipartite graph on 70 vertices, each with degree 6 or 8. It has diameter

4 and girth 4. MC(P) is a graph on the same 70 vertices with, each with degree 6 or

20. It has diameter 3 and girth 3.
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7.13 6-polytope with Tetrahedral 3-faces

We end our discussion of notable polytopes with one of rank 6, in particular the uni-

versal polytope {{3, 3, 4, 3}(2,0,0,0), {3, 4, 3, 3}(2,0,0,0)}. We saw as a corollary to Theo-

rem 21 that this polytope will have a 3-arc transitive medial layer graph.

P has 32 facets, 768 4-faces, 4096 tetrahedral 3-faces, 4096 triangular 2-faces, 768

edges, and 32 vertices. Its automorphism group has 589824 elements and can be

presented as follows:

Let ρ0, ρ1, ..., ρ5 be involutions that are generators of the Coxeter Group with the

string diagram below. That is to say ρ2i = ε for i=0,...,5; (ρiρj)
2 = ε if |i − j| ≥

2; (ρiρi+1)
3 = ε for i = 0, 1, 3, 4; and (ρ2ρ3)

4 = ε.

•
3
•

3
•

4
•

3
•

3
•

Γ(P) is a quotient of that Coxeter group by two more relations:

(ρ0ρ1ρ2ρ3ρ2ρ1ρ4ρ3ρ2ρ3ρ4ρ1ρ2ρ3ρ2ρ1)
2 = (ρ5ρ4ρ3ρ2ρ3ρ4ρ1ρ2ρ3ρ2ρ1ρ4ρ3ρ2ρ3ρ4)

2 = ε.

For a full explanation of these relations see [21]. Now since this polytope is self-

dual, when considering symmetries of M(P), we need to consider the group of all

rank preserving and rank reversing automorphisms of P . D(P) has 1179648 elements

and is isomorphic to the semi-direct product of Γ(P) and C2; here C2 is the group

generated by the involution that reverses a base flag of P .

M(P) is a bipartite 4-regular graph on 8192 vertices. Aut(M(P)) has 1179648

elements, and 1179648 = 8192× 4× 32× 4. This would lead us to believe that M(P)

is 3-arc transitive with group of size 4 acting as a non-trivial stabilizer of any given

3-arc. Computation using GAP shows that this is the case.
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Similar to the 4-simplex, we knew from Theorem 21 that D(P) would act transi-

tively on the 3-arcs of M(P) but not on the 4-arcs. In this case, as well as in the case

of the simplex, the full group of graph automorphisms still did not act transitively

on the 4-arcs. In fact every graph automorphism of M(P) comes from a polytope

automorphism of P . In other words, Aut(M(P))=D(P). M(P) has diameter 16 and

girth 8. Unlike in the case of the 4-simplex, M(P) is not distance regular, and thus

not distance transitive.
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