Alternate Title

Modeling and Electrode Contact Compensation for EIT in a Mammography Geometry


Electrical Impedance Tomography (EIT) is an imaging modality which currently shows promise for the detection an characterization of breast cancer. A very significant problem in EIT imaging is the proper modeling of the interface between the body and the electrodes. We have found empirically that it is very difficult, in a clinical setting, to assure that all electrodes make satisfactory contact with the body. In addition, we have observed a capacitive effect at the skin/electrode boundary that is spatially heterogeneous. To compensate for these problems, we have developed a hybrid nonlinear-linear reconstruction algorithm in which we first estimate electrode surface impedances, using a Newton-type iterative optimization procedure with an analytically compute Jacobian matrix. We subsequently make use of a linearized algorithm to perform a three-dimensional reconstruction of perturbations in both contact impedances and in the spatial distributions of conductivity and permittivity. Results show that, using this procedure, artifacts due to electrodes making poor contact can be greatly reduced.


Poster presented at the 2007 Thrust R2A Multi-View Tomography Methods Conference


Tomography, Electrode Contact Compensation

Subject Categories

Electrical impedance tomography




Bernard M. Gordon Center for Subsurface Sensing and Imaging Systems (Gordon-CenSSIS)

Publication Date


Rights Holder

Bernard M. Gordon Center for Subsurface Sensing and Imaging Systems (Gordon-CenSSIS)

Click button above to open, or right-click to save.

Included in

Engineering Commons